

仪器型号: <u>思仪Ceyear87235系列USB平</u>均功率探头-用户手册

西安安泰测试科技有限公司 仪器维修|租赁|销售|测试

地址:西安市高新区纬二十六路 369 号 网址: <u>www.agitekservice.com</u> 电话:400-876-5512 座机:029-88827159

中电科思仪科技股份有限公司

该手册适用下列型号 USB 平均功率探头,基于固件版本 Version 1.0 及以上。

- 87235C USB 平均功率探头
- 87235D USB 平均功率探头
- 87235F USB 平均功率探头
- 87235FA USB 平均功率探头
- 87235H USB 平均功率探头

版 本: A.1 2022年10月,中电科思仪科技股份有限公司
服务咨询: 0532-86889847 400-1684191
技术支持: 0532-86880796
质量监督: 0532-86886614
传 真: 0532-86889056
网 址: www.ceyear.com
电子邮箱: techbb@ceyear.com
地 址: 山东省青岛市黄岛区香江路98号
邮 编: 266555

前言

非常感谢您选择使用中电 科仪器仪表有限公司研制、 生产的 87235 系列 USB 平 均功率探头!本司产品集高、 精、尖于一体,在同类产品 中有较高的性价比。

我们将以满足您的需求为 己任,为您提供高品质的测 量仪器,同时带给您一流的 售后服务。我们的一贯宗旨 是"质量优良,服务周到", 提供满意的产品和服务是 我们对用户的承诺。

手册编号

AV2.984.1545SS

版本

A.1 202.10 中电科思仪科技股份有限 公司

手册授权

本手册中的内容如有变更, 恕不另行通知。本手册内容 及所用术语最终解释权属 于中电科仪器仪表有限公 司。

本手册版权属于中电科仪 器仪表有限公司,任何单位 或个人非经本所授权,不得 对本手册内容进行修改,并 且不得以赢利为目的对本 手册进行复制、传播,中电 科仪器仪表有限公司保留 对侵权者追究法律责任的 权利。

产品质保

本产品从出厂之日起保修 期为18个月。质保期内仪 器生产厂家会根据实际情 况维修或替换损坏部件。具 体维修操作事宜以合同为 准。

产品质量证明

本产品从出厂之日起确保 满足手册中的指标。校准测 量由具备国家资质的计量 单位予以完成,并提供相关 资料以备用户查阅。

质量/环境管理

本产品在研发、制造和测试 过程中均遵守质量和环境 管理体系。本单位已经具备 资质并通过 ISO 9001 和 ISO 14001 管理体系。

安全事项

警告标识表示存在危险。它 提示用户注意某一操作过 程、操作方法或者类似情况。 若不能遵守规则或者正确 操作,则可能造成人身伤害。 在完全理解和满足所指出 的警告条件之后,才可继续 下一步。

注意

注意标识代表重要的信息 提示,但不会导致危险。它 提示用户注意某一操作过 程、操作方法或者类似情况。 若不能遵守规则或者正确 操作,则可能引起仪器损坏 或丢失重要数据。在完全理 解和满足条件之后,才可进 行下一步操作。

日录

来

1 手册导航1
1.1 关于手册
1.2 关联文档
2 概述4
2.1 产品综述
2.2 安全使用指南4
3 使用入门9
3.1 准备使用
3.2 用户检查
3.3 配置方法
4 操作指南
4.1 测试面板介绍
4.2 测试面板操作
4.3 平均功率测量
5 远程控制
5.1 远程控制基础
5.2 仪器程控端口与配置
5.3 VISA接口基本编程方法
5.4 1/O库
6 故障诊断与返修54

目录		
6.1	工作原理	54
6.2 2	故障诊断与排除	55
6.3 🕯	错误信息	56
6.4 j	返修方法	56
7 技	5术指标	58
7.1 🤅	声明	58
7.2 j	产品特征	58
7.3 3	技术指标	59
7.4 j	选件信息	61
7.5 i	补充信息	61

1 手册导航

本章介绍了 87235 系列 USB 平均功率探头的用户手册功能、章节构成和主要内容, 并介绍了提供给用户使用的仪器关联文档。

- 关于手册......1
- 关联文档......2

1.1 关于手册

本手册介绍了 87235 系列 USB 平均功率探头的基本功能和操作使用方法。描述了仪器产品特点、基本使用方法、配置操作指南、菜单、远程控制、维护及技术指标和测试方法等内容,以帮助用户尽快熟悉和掌握仪器的操作方法和使用要点。为方便您熟练使用该仪器,请在操作仪器前,仔细阅读本手册,然后按照手册指导正确操作。

用户手册共包含的章节如下:

● 概述

概括地介绍了87235 USB平均功率探头的主要性能特点、典型应用示例及操作仪器的安全指导事项。目的使用户初步了解仪器的主要性能特点,并指导用户安全操作仪器。

● 使用入门

本章介绍87235系列USB平均功率探头的操作前检查、仪器浏览、基本配置方法、 配置窗口使用说明及数据存储等。以便用户初步了解仪器本身和配置过程,并为后续全 面介绍仪器配置操作指南做好前期准备。该章节包含的部分内容与快速使用指南手册相 关章节一致。

● 操作指南

详细介绍仪器各种配置功能的操作方法,包括:配置仪器、启动配置过程和获取配 置结果等。主要包括两部分:基本操作指南和高级操作指南。功能操作指南部分针对不 熟悉87235系列USB平均功率探头使用方法的用户,系统、详细地介绍、列举每种功能, 使用户理解掌握USB平均功率探头的一些基本用法,如设置触发、水平刻度、频率等。 高级操作指导部分针对已具备基本的USB平均功率探头使用常识,但对一些特殊用法不 够熟悉的用户,介绍相对复杂的测试过程、高阶的使用技巧、指导用户实施测量过程。 例如:脉冲调制信号的测量、门的使用等。

● 菜单

按照功能分类介绍菜单结构和菜单项说明,方便用户查询参考。

● 远程控制

概述了仪器远程控制操作方法,目的使用户可以对远程控制操作快速上手。分四部 分介绍:程控基础,介绍与程控有关的概念、软件配置、程控端口、SCPI 命令等;仪 器端口配置方法,介绍 87235 系列 USB 平均功率探头程控端口的连接方法和软件配置 方法; VISA 接口基本编程方法,以文字说明和示例代码的方式给出基本编程示例,使 用户快速掌握程控编程方法; I/O 函数库,介绍仪器驱动器基本概念及 IVI-COM/IVI-C 驱动的基本安装配置说明。 1 手册导航

1.2 关联文档

故障诊断和返修

包括整机工作原理介绍、故障判断和解决方法、错误信息说明及返修方法。

● 技术指标和测试方法

介绍了 87235 系列 USB 平均功率探头的产品特征、主要技术指标以及推荐用户使用的测试方法。

1.2 关联文档

87235 系列 USB 平均功率探头的产品文档包括:

- 快速使用指南
- 在线帮助
- 用户手册
- 程控手册

快速使用指南

介绍了仪器的配置和启动配置的基本操作方法,目的是:使用户快速了解仪器的特点、 掌握基本设置和基础的本地、程控操作方法。包含的主要章节是:

- 准备使用
- 典型应用
- 获取帮助

用户手册

详细介绍了仪器的功能和操作使用方法,包括:配置、程控和维护等信息。目的是:指 导用户如何全面的理解产品功能特点及掌握常用的仪器测试方法。包含的主要章节有:

- 手册导航
- 概述
- 使用入门
- 操作指南
- 远程控制
- 故障诊断与返修
- 技术指标和测试方法

程控手册

本手册详细介绍了程控编程基础、SCPI 基础、SCPI 命令、编程示例和 I/O 驱动函数库 等。目的是:指导用户如何快速、全面的掌握仪器的程控命令和程控方法。包含的主要章节 有:

- 远程控制
- 程控命令
- 编程示例
- 错误说明
- 附录

在线帮助

在线帮助集成在仪器产品中,提供快速的文本导航帮助,方便用户本地和远控操作。仪

1 手册导航

1.2 关联文档

器前面板硬键或用户界面工具条都有对应的快捷键激活该功能。包含的主要章节同用户手册。

2.1 产品综述

2 概述

2 概述

本章介绍了 87235 系列 USB 平均功率探头的主要性能特点、主要用途范围及主要技术 指标。同时说明了如何正确操作仪器及用电安全等注意事项。

- 安全使用指南......4

2.1 产品综述

87235 系列 USB 平均功率探头频率范围覆盖 10MHz~50GHz,功率动态范围 -70dBm~+26dBm,具有体积小、重量轻、携带方便、支持热插拔的特点,可广泛应用于 各个领域平均功率、峰值功率等参数的测试。87235 系列 USB 平均功率探头主要性能特点 如下:

- 准确的平均功率测量:87235系列 USB 平均功率探头可以实现最高 0.2dB 的平均 功率准确度测量,采用 20MS/s 的连续采样率,具有很高的测量速度和可重复性, 配合高达 50GHz 的频率范围和低至-70dBm 的功率测量能力,可覆盖绝大多数测 试应用。
- 内部/外部校零功能:每个87235系列平均功率探头可通过开关控制实现内部校零, 因此在使用过程中不需要断开功率计与被测设备的连接,加快测量速度,减小连接 器磨损,降低测量不确定度。
- 3) 外部触发功能:外部触发能够精确的触发接近噪声下限的小信号,87235系列 USB 平均功率探头具有内置的触发输入,可以通过标准 BNC 到 MMCX 电缆将被测设 备的外部触发连接到功率计。
- 4) 结构小巧便于携带: 87235 系列 USB 平均功率探头不需要功率主机, 通过 USB2.0 接口即可进行供电和通信,因此可以实现便携式、轻量级的解决方案,适用于现场 测试。

2.2 安全使用指南

请认真阅读并严格遵守以下注意事项!

我们将不遗余力地保证所有生产环节符合安全标准,为用户提供安全保障。我们的产品 及其所用辅助性设备的设计与测试均符合相关安全标准,并且建立了质量保证体系对产品质 量进行监控,确保产品始终符合此类标准。为使设备状态保持完好,确保操作的安全,请遵 守本手册中所提出的注意事项。如有疑问,欢迎随时向我们进行咨询。

另外,正确的使用本产品也是您的责任。在开始使用本仪器之前,请仔细阅读并遵守安 全说明。本产品适合在工业和实验室环境或现场测量使用,切记按照产品的限制条件正确使 用,以免造成人员伤害或财产损害。如果产品使用不当或者不按要求使用,出现的问题将由 您负责,我们将不负任何责任。因此,为了防止危险情况造成人身伤害或财产损坏,请务必 遵守安全使用说明。请妥善保管基本安全说明和产品文档,并交付到最终用户手中。

2.2.1 安全标识

2.2.1.1 产品相关

产品上的安全警告标识如下(表 2.1):

符号	意义	符号	意义
	注意,特别提醒用户注意的信息。 提醒用户应注意的操作信息或说 明。	0	开/关 电源
18 kg	注意,搬运重型设备。	\bigcirc	待机指示
4	危险!小心电击。		直流电(DC)
	警告!小心表面热。	\sim	交流电(AC)
	防护导电端	2	直流/交流电(DC/AC)
	地		仪器加固绝缘保护
-+-	接地端	X	电池和蓄电池的EU标识。 具体说明请参考本节"2.2.8 废 弃处理/环境保护"中的第1项。
	注意,小心处理经典敏感器件。		单独收集电子器件的EU标识。 具体说明请参考本节"2.2.8 废 弃处理/环境保护"中的第2项。
	警告!辐射。		

表2.1 产品安全标识

2.2.1.2 手册相关

为提醒用户安全操作仪器及关注相关信息,产品手册中使用了以下安全警告标识,说明如下:

2.2 安全使用指南 ▲ 危 险 ▲ 倉 陸 ▲ 音 協 ▲ 音 告 本 部告标识,若不避免,会带来人身和设备伤害。 ▲ 小 心 小心标识,若不避免,会导致轻度或中度的人身和设备伤害。 注 意 注 意标识,代表重要的信息提示,但不会导致危险。 提 示标识,仪器及操作仪器的信息。

2.2.2 操作状态和位置

2 概述

操作仪器前请注意:

- 除非特别声明,87235 系列 USB 平均功率探头的非工作温度:-40℃~ +70℃; 工作温度:0℃~50℃。
- 请勿将仪器放置在有水的表面、车辆、橱柜和桌子等不固定的物品上。请将仪器稳 妥放置并加固在结实的物品表面(例如:防静电工作台)。
- 请勿将仪器放置在散热的物品表面(例如:散热器)。操作环境温度不要超过产品 相关指标说明部分,产品过热会导致电击、火灾等危险。
- 4) 仪器预热,仪器冷启动需预热 30min,在稳定的环境温度下预热 2h 后达到内部温度平衡。仪器在环境温度下存放 2h,预热并进行全部用户校准后,满足各项指标性能。

2.2.3 用电安全

仪器的用电注意事项:

- 1) 除非经过特别允许,不能随意打开仪器外壳,这样会暴露内部电路和器件,引起不 必要的损伤。
- 2) 仪器机壳打开时,不属于仪器内部的物体,不要放置在机箱内,否则容易引起短路, 损伤仪器,甚至带来人员伤害。
- 除非特别声明,仪器未做过防水处理,因此仪器不要接触液体,以防损伤仪器,甚 至带来人员伤害。

2.2 安全使用指南

- (2) 仪器不要处于容易形成雾气的环境,例如在冷热交替的环境移动仪器,仪器上形成 的水珠易引起电击等危害。
- 2.2.4 操作注意事项
 - (2) 仪器操作人员需要具备一定的专业技术知识,以及良好的心理素质,并具备一定的 应急处理反映能力。
 - 2) 移动或运输仪器前,请参考本节"2.2.7运输"的相关说明。
 - 2) 仪器生产过程中不可避免的使用可能会引起人员过敏的物质(例如: 镍),若仪器 操作人员在操作过程中出现过敏症状(例如: 皮疹、频繁打喷嚏、红眼或呼吸困难 等),请及时就医查询原因,解决症状。
 - 4) 拆卸仪器做报废处理前,请参考本节"2.2.8 废弃处理/环境保护"的相关说明。
 - 5) 射频类仪器会产生较高的电磁辐射,此时,孕妇和带有心脏起搏器的操作人员需要加以特别防护,若辐射程度较高,可采取相应措施移除辐射源以防人员伤害。
 - 6) 若发生火灾,损坏的仪器会释放有毒物质,为此操作人员需具备合适的防护设备(例如:防护面罩和防护衣),以防万一。
 - 7) 电磁兼容等级,符合 GJB3947A-2009 中 3.9.1 规定的要求。

2.2.5 维护

- 只有授权的且经过专门技术培训的操作人员才可以打开仪器机箱。进行此类操作前, 需断开电源线的连接,以防损伤仪器,甚至人员伤害。
- 2) 仪器的修理、替换及维修时,需由厂家专门的电子工程师操作完成,且替换维修的 部分需经过安全测试以保证产品的后续安全使用。
- 2.2.7 运输
 - 若仪器较重请小心搬放,必要时借助工具(例如:起重机)移动仪器,以免损伤身体。
 - 2) 仪器把手适用于个人搬运仪器时使用,运输仪器时不能用于固定在运输设备上。为防止财产和人身伤害,请按照厂家有关运输仪器的安全规定进行操作。
 - 在运输车辆上操作仪器,司机需小心驾驶保证运输安全,厂家不负责运输过程中的 突发事件。所以请勿在运输过程中使用仪器,且应做好加固防范措施,保证产品运 输安全。

2.2.8 废弃处理/环境保护

请勿将标注有电池或者蓄电池的设备随未分类垃圾一起处理,应单独收集,且在合适的收集地点或通过厂家的客户服务中心进行废弃处理。

2 概述

2.2 安全使用指南

- 请勿将废弃的电子设备随未分类垃圾一起处理,应单独收集。厂家有权利和责任帮助最终用户处置废弃产品,需要时,请联系厂家的客户服务中心做相应处理以免破坏环境。
- 产品或其内部器件进行机械或热再加工处理时,或许会释放有毒物质(重金属灰尘 例如:铅、铍、镍等),为此,需要经过特殊训练具备相关经验的技术人员进行拆 卸,以免造成人身伤害。
- 4) 再加工过程中,产品释放出来的有毒物质或燃油,请参考生产厂家建议的安全操作 规则,采用特定的方法进行处理,以免造成人身伤害。

本章介绍了 87235 系列 USB 平均功率探头的使用前注意事项和常用基本配置方法等。 以便用户初步了解仪器本身和配置过程。

- 用户检查......15
- 配置方法......16

3.1 准备使用

防止损伤仪器

为避免电击、火灾和人身伤害:

- 请勿擅自打开机箱;
- 请勿试图拆开或改装本手册未说明的任何部分。若自行拆卸,可能会导致电磁屏蔽 效能下降、机内部件损坏等现象,影响产品可靠性。若产品处于保修期内,我方不 再提供无偿维修;
- 认真阅读本手册"2.2 安全使用指南"章节中的相关内容,及下面的操作安全注意事项,同时还需注意数据页中涉及的有关特定操作环境要求。

注意

静电防护

注意工作场所的防静电措施,以避免对仪器带来的损害。具体请参考手册"2.2 安全使用指南"章节中的相关内容。

注意

操作仪器时请注意:

不恰当的操作位置或配置设置会损伤仪器或其连接的仪器。仪器加电前请注意:

- ▶ 保持仪器干燥;
- ▶ 平放、合理摆放仪器;
- 环境温度符合数据页中标注的要求;
- 端口输入信号功率符合标注范围;
- ▶ 信号输出端口正确连接,不要过载。

3.1 准备使用

提 示

电磁干扰 (EMI) 的影响:

电磁干扰会影响配置结果,为此:

- 选择合适的屏蔽电缆。例如,使用双屏蔽射频/网络连接电缆;
- ▶ 请及时关闭已打开且暂时不用的电缆连接端口或连接匹配负载到连接端口;
- ▶ 参考注意数据页中的电磁兼容(EMC)级别标注。

3.1.1 环境要求

87235 系列 USB 平均功率探头的操作场所应满足下面的环境要求:

1) 操作环境

操作环境应满足下面的要求:

表 3.1 87235 操作环境要求

温度	0°C ~ 50°C	
湿度	温度低于 10℃时湿度不加控制	
	温度范围为 10℃~30℃时,相对湿度为(5~95)%	
	温度范围为 30℃~40℃时,相对湿度为(5~75)%	
	温度范围为40℃以上时,相对湿度为(5~45)%	
海拔高度	0~4,600 米	
振 动	频率 5 Hz ~500 Hz	

注意

上述环境要求只针对仪器的操作环境因素,而不属于技术指标范围。

2)静电防护

静电对电子元器件和设备有极大的破坏性,通常我们使用两种防静电措施:导电桌垫与 手腕组合;导电地垫与脚腕组合。两者同时使用时可提供良好的防静电保障。若单独使用, 只有前者可以提供保障。为确保用户安全,防静电部件必须提供至少1MΩ的对地隔离电阻。 请正确应用以下防静电措施来减少静电损坏:

▶ 保证所有仪器正确接地,防止静电生成。

- > 将同轴电缆与仪器连接之前,应将电缆的内外导体分别与地短暂接触。
- 工作人员在接触接头、芯线或做任何装配操作以前,必须佩带防静电手腕或采取其 他防静电措施。

▲ 警告

电压范围

上述防静电措施不可用于超过 500V 电压的场合。

3.1.2 正确使用连接器

在 USB 平均功率探头进行各项测试过程中,经常会用到连接器,尽管校准件、测试电 缆和分析仪测量端口的连接器都是按照标准进行设计制造,但是所有这些连接器的使用寿命 都是有限的。由于正常使用时不可避免的存在磨损,导致连接器的性能指标下降甚至不能满 足测量要求,因此正确的进行连接器的维护和测量连接不但可以获得精确的、可重复的测量 结果,还可以延长连接器的使用寿命,降低测量成本,在实际使用过程中需注意以下几个方 面:

1) 连接器的检查

在进行连接器检查时,应该佩带防静电腕带,建议使用放大镜检查以下各项:

- 1) 电镀的表面是否磨损,是否有深的划痕;
- 2) 螺纹是否变形;
- 3) 连接器的螺纹和接合表面上是否有金属微粒;
- 4) 内导体是否弯曲、断裂;
- 5) 连接器的螺套是否旋转不良。

▲ 小心

连接器检查防止损坏仪器端口

任何已损坏的连接器即使在第一次测量连接时也可能损坏与之连接的良好连接器,为保 护信号发生器本身的各个接口,在进行连接器操作前务必进行连接器的检查。

2) 连接方法

测量连接前应该对连接器进行检查和清洁,确保连接器干净、无损。连接时应佩带防静 电腕带,正确的连接方法和步骤如下:

步骤 1. 如图 3.1,对准两个互连器件的轴心,保证阳头连接器的插针同心地滑移进阴 头连接器的接插孔内。

图 3.1 互连器件的轴心在一条直线上

步骤 2. 如图 3.2,将两个连接器平直地移到一起,使它们能平滑接合,旋转连接器的 螺套(注意不是旋转连接器本身)直至拧紧,连接过程中连接器间不能有相对 的旋转运动。

图 3.2 连接方法

步骤 3. 如图 3.3, 使用力矩扳手拧紧完成最后的连接, 注意力矩扳手不要超过起始的 折点, 可使用辅助的扳手防止连接器转动。

图 3.3 使用力矩扳手完成最后连接

3.1 准备使用

3) 断开连接的方法

步骤 1. 支撑住连接器以防对任何一个连接器施加扭曲、摇动或弯曲的力量;

步骤 2. 可使用一支开口扳手防止连接器主体旋转;

- 步骤 3. 利用另一支扳手拧松连接器的螺套;
- 步骤 4. 用手旋转连接器的螺套,完成最后的断开连接;

步骤 5. 将两个连接器平直拉开分离。

4) 力矩扳手的使用方法

力矩扳手的使用方法如图 3.4 所示,使用时应注意以下几点:

- ▶ 使用前确认力矩扳手的力矩设置正确;
- 加力之前确保力矩扳手和另一支扳手(用来支撑连接器或电缆)相互间夹角在 90° 以内;
- > 轻抓住力矩扳手手柄的末端,在垂直于手柄的方向上加力直至达到扳手的折点。

5) 连接器的使用和保存

- 1) 连接器不用时应加上保护套;
- 不要将各种连接器、空气线和校准标准散乱的放在一个盒子内,这是引起连接器损坏的一个最常见原因;
- (b) 使连接器和分析仪保持相同的温度,用手握住连接器或用压缩空气清洁连接器都会显著改变其温度,应该等连接器的温度稳定下来后再使用它进行校准;
- 4) 不要接触连接器的接合平面,皮肤的油脂和灰尘微粒很难从接合平面上去除;
- 不要将连接器的接触面向下放到坚硬的台面上,与任何坚硬的表面接触都可能损坏 连接器的电镀层和接合表面;
- 6) 佩带防静电腕带并在接地的导电工作台垫上工作,这可以保护分析仪和连接器免受 静电释放的影响。
- 6)连接器的清洁

清洁连接器时应该佩带防静电腕带,按以下步骤清洁连接器:

 使用清洁的低压空气清除连接器螺纹和接合平面上的松散颗粒,对连接器进行彻底 检查,如果需要进一步的清洁处理,按以下步骤进行;

3.1 准备使用

- 2) 用异丙基酒精浸湿(但不浸透)不起毛的棉签;
- 使用棉签清除连接器接合表面和螺纹上的污物和碎屑。当清洁内表面时,注意不要 对中心的内导体施加外力,不要使棉签的纤维留在连接器的中心导体上;
- 4) 让酒精挥发,然后使用压缩空气将表面吹干净;
- 5) 检查连接器,确认没有颗粒和残留物;
- 6) 如果经过清洁后连接器的缺陷仍明显可见,表明连接器可能已经损坏,不应该再使用,并在进行测量连接前确认连接器损坏的原因。

7) 适配器的使用

当功率计的测量端口和使用的连接器类型不同时,必须使用适配器才能进行测量连接, 另外即使功率计的测量端口和被测件端口的连接器类型相同,使用适配器也是一个不错的主 意。这两种情况都可以保护测量端口,延长其使用寿命,降低维修成本。将适配器连接到功 率计的测量端口前应对其进行仔细的检查和清洁,应该使用高质量的适配器,减小失配对测 量精度的影响。

8) 连接器的接合平面

微波测量中的一个重要概念是参考平面,对于分析仪来说,它是所有测量的基准参考面。 在进行校准时,参考平面被定义为测量端口和校准标准接合的平面,良好连接和校准取决于 连接器间在接合面的各点上是否可以完全平直的接触。

图 3.5 校准平面

3.1.3 例行维护

该节介绍了 87235 系列 USB 平均功率探头的日常维护方法。

1) 清洁仪器表面

清洁仪器表面时,请按照下面的步骤操作:

步骤 1. 关机, 断开与仪器连接的电源线。

步骤 2. 用干的或稍微湿润的软布轻轻擦拭表面,禁止擦拭仪器内部。

步骤 3. 请勿使用化学清洁剂,例如:酒精、丙酮或可稀释的清洁剂等。

3.2 用户检查

2) 测试端口维护

87235系列USB平均功率探头功率输入接头损伤或内部存在灰尘会影响射频波段测试结果,请按照的下面的方法维护该类接头:

- ▶ 接头应远离灰尘,保持干净;
- > 为防止静电泄露(ESD),不要直接接触接头表面;
- ▶ 不要使用损伤的接头;
- > 请使用电吹风清洁接头,不要使用例如砂纸之类的工具研磨接头表面。

3.2 用户检查

3.2.1 开箱

1) 外观检查

- **步骤 1.** 检查外包装箱和仪器防震包装是否破损,若有破损保存外包装以备用,并按照 下面的步骤继续检查。
- 步骤 2. 开箱, 检查主机和随箱物品是否有破损;
- 步骤 3. 按照表 3.2 仔细核对以上物品是否有误;
- **步骤 4.** 若外包装破损、仪器或随箱物品破损或有误,严禁通电开机!请根据封面中的服务咨询热线与我公司服务咨询中心联系,我们将根据情况迅速维修或调换。
- 2) 型号确认

表 3.2 87235 随箱物品清单

名 称	数 量	功 能
主机:		
♦ 87235	1	功率探头
标函:		
◇ 功率探头电缆	1	USB 供电和通信
令 光盘	1	程序
◇ 装箱清单	1	—
◇ 产品合格证	1	—

3.2.2 加电测试

1) 开/关电

87235 系列 USB 平均功率探头采用主控计算机 USB2.0 接口供电,供电电压为+5V,供电电流为 500mA,使用时将 USB 平均功率探头通过 USB 电缆连接到主控计算机 USB 接口即可;使用完毕后拔下 USB 电缆实现仪器断电。

3.3 配置方法

2)指示灯

表 3.3 87235 指示灯工作状态

颜色	状态
绿色	正常工作状态
绿色闪烁	初始加电和校零操作
红色	工作停止状态
红色闪烁	硬件错误
红绿闪烁	固件升级

当红色闪烁时,请重新插拔 USB 平均功率探头,若仍然为红色闪烁状态,请根据封面中的服务咨询热线与我公司服务咨询中心联系,我们将根据情况迅速维修或调换。

3.2.3 外观说明

该章节介绍了 87235 系列 USB 平均功率探头的外观组成及其功能。外观图如下(图 3.6),列项说明如表 3.4。

图 3.6 仪器外观

表 3.4 外观说明

名 称	说 明
功率输入接口	用于接收功率信号输入
USB 接口	用于USB平均功率探头供电和通信
触发输入接口	用于外触发信号输入
指示灯	用于指示仪器工作状态

3.3 配置方法

本节介绍了 87235 系列 USB 平均功率探头的硬件要求和配置方法。

3.3.1 硬件要求

表 3.5 主控计算机基本配置要求

主控计算机	
提供五体	Windows 10 32-bit 和 64-bit
	Windows 7 32-bit 和 64-bit
珠1F赤坑	Windows XP
	Linux(支持 visa 库)
	处理器:1GHz 或更高(推荐 2GHz 以上)
西州	内存:2GB 或更高(推荐 4GB 以上)
硬件	硬盘空间:1.0GB 或更高
	显示:1280×1024 或更高

3.3.2 软件安装

仪器软件的安装包括 VISA 库和仪器驱动两部分。

3.3.2.1 VISA 库安装

如果用户已经安装有 VISA,请跳过该步骤。

步骤一:打开安装光盘中的"VISA 库"文件夹,双击文件夹中的 Setup.exe,如下图。

图 3.7 VISA 库安装

3.3 配置方法

步骤二:选择安装路径,点击 next,如下图。

VISA 5.0.3	
Destination Directory Select the primary installation directory.	NATIONAL INSTRUMENT
National Instruments software will be installed in a subfolder of different folder, click the Browse button and select another.	the following. To install into a
Destination Directory	

图 3.8 VISA 库安装

步骤三:安装默认配置或全选,点击 next,如下图。

Features Select the features to install	
NI-VISA 5.0.3 Run Time Support Configuration Support Development Support Remote Server Read-Time Support Vindows Mobile/CE Support NI Instrument I/O Assistant 2.6.1 NI System Configuration 1.1.3 NI Measurement & Automation Explorer 4.7. NI-1588 Configuration 1.0	National Instruments VISA driver version 5.0.3. VISA provides an API for controlling VXI, GPIB, Serial, PXI and other types of instruments. This feature will be installed on the local hard drive. This feature and its selected subcomponents may require up to 19.6 MB of disk space.
Irrectory for NI-VISA 5 0.3	
:\Program Files\IVI Foundation\VISA\	Biowse

图 3.9 VISA 库安装

步骤四:点击 next,选择相应选项,直到 Finish。VISA 库安装完毕。 注意:计算机不能同时安装有两个及以上 VISA 库。如果安装多个 VISA 库,需要将所 有 VISA 库完全卸载、卸载完毕后重新安装任意一个 VISA 库。

3.3.2.2 硬件驱动程序安装

将 USB 平均功率探头正确连接主机后,由于操作系统原有软件配置的不同,系统可能 会自动无提示安装驱动,也可能会提示用户安装仪器驱动,甚至会由于原有软件配置识别成 其他设备,下面分别说明。

(一) 无提示自动安装

确定是否自动安装好硬件驱动的方法为:右键点击我的电脑→管理→设备管理器→若设 备列表中有 USB Test and Measurement Deice (IVI)设备,右键单击该条目,选择"属性", 再选择"详细信息"标签,在属性下拉菜单中选择"硬件 ID",可以查看到仪器的硬件 ID 属性 为"USB\VID_04B4&PID_1010",这是该仪器的固有 ID。如下图所示。

此时,说明硬件驱动自动安装了,本部分操作可略去,直接进入第三部分。

图 3.10 硬件驱动安装

(二)提示用户安装仪器驱动

插入 USB 平均功率探头后,系统提示安装驱动。如下。

步骤一:将 USB 平均功率探头正确连接主机后,会自动弹出硬件更新向导,如下图所示。

3.3 配置方法

图 3.11 硬件驱动安装

步骤二:选择从列表或指定位置安装,点下一步,如下图所示。

硬件更新向导	
	 这个向导帮助您安装软件: USB Test and Measurement Device (IVI) シン 和果您的硬件带有安装 CD 或软盘,请現在将 支払入。 您期望向导做什么? 自动安装软件(推荐)(L) 认列表或指定位置安装(高级)(S) 要继续,请单击"下一步"。
	< 上一步 (B) 下一步 (B) > 取消

图 3.12 硬件驱动安装

3.3 配置方法

步骤三:选择"不要搜索,我要自己选择要安装的驱动",点下一步,如下图所示。

硬件更新向导
请选择您的搜索和安装选项。
○ 在这些位置上搜索最佳驱动程序 (፩)。 使用下列的复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装找 到的最佳驱动程序。
 搜索可移动媒体(软盘、CD-BOM)(M) ✓ 在搜索中包括这个位置(0): C:\Cypress\USB\Drivers ✓ 浏览(B) • 不要搜索。我要自己选择要安装的驱动程序(0)。 选择这个选项以便从列表中选择设备驱动程序。Windows 不能保证您所选择的驱动程序与您的硬件最匹配。
< 上一步 (B) 下一步 (B) > 取消

图 3.13 硬件驱动安装

步骤四:选择"USB Test and Measurement Device",点击下一步,安装完成,如下图 所示。

图 3.14 硬件驱动安装

3.3 配置方法

步骤五:点击完成,必要时重启计算机。

(三)系统自动识别成其他设备,并安装了默认驱动

由于原有系统安装的软件配置各不相同,系统可能会自动把 USB 平均功率探头识别成 其他设备,一般会位于设备管理器的"通用串行总线管理器"中,如下图。

图 3.15 硬件驱动安装

可以通过反复插拔 USB 平均功率探头,查看设备管理器中增加或减少的设备,并通过 右键属性,查看"详细信息"中的"硬件 ID"是否为"USB\VID_04B4&PID_1010",如果确定为 该设备,可右键单击,选择"更新驱动程序…"。具体步骤如下。

步骤 1: 选择"浏览计算机以查找驱动程序软件", 如下图所示。

3.3 配置方法

图 3.16 硬件驱动安装

步骤 2:选择"USB Test and Measurement Device",点击下一步,安装完成,如下图所示。

◎ 更新驱动程序软件 - USB Test and Measurement Device	e (IVI)
选择要为此硬件安装的设备驱动程序	
请选定硬件设备的厂商和型号,然后单击"下一步" 畫,请单击"从磁盘安装"。	。如果手头有包含要安装的驱动程序的磁
☑ 显示兼容硬件(C) 型号	
USB Test and Measurement Device (IVI)	
这个驱动程序已经过数字签名。	从磁盘安装(出)
宣將成为什么認知思予查看很重要	

图 3.17 硬件驱动安装

3.3 配置方法

步骤 3:安装成功后,设备管理器会显示有"USB Test and Measurement Device",如下图所示。

3.3.2.3 运行测试面板

打开软件光盘中的"测试面板"文件夹,运行"功率测量平台"。

点击软面板工具栏"连接设备"按钮(请确保此时 USB 平均功率探头电缆连接电脑主机 USB 接口),弹出对话框如下图所示,选中设备后点击连接按钮,之后就可以根据需要进行 功率测量了。

■ 设备连接			<u> 8 X</u>
☑ 87235F-	2020001		
连接	ŧ	取消	

图 3.19 设备连接窗口

图 3.20 软面板主界面

4 操作指南

本章介绍了 87235 系列 USB 平均功率探头的不同测量功能的操作方法,详细介绍了测量步骤。

•	测试面板介绍	27	7
---	--------	----	---

4.1 测试面板介绍

本节介绍了 87235 系列 USB 平均功率探头的用户操作界面主要特征及基本测量设置方法, 后续的不同测量任务都会用到这些基本的测量设置方法。

4.1.1 主界面

87235 系列 USB 平均功率探头采用新型直观的图形用户界面, 能够清晰的显示信号功率值和脉冲调制包络波形。整个仪器操作界面按照功能模块划分为不同的区域, 可同时操作多个功能模块。本节主要介绍了 USB 平均功率探头用户操作界面的分区组成及功能。操作界面如图 4.1, 列项说明如表 4.1。

序号	名 称	说 明
1	菜单栏	功能设置菜单
2	工具栏	常用工具快捷方式
З	参数显示区	显示脉冲测量参数(仅用于峰值功率探头)
4	设备显示区	显示所有连接的设备
5	迹线显示区	显示脉冲迹线(仅用于峰值功率探头)
6	功率显示区	显示平均功率
7	功能设置区	进行功能菜单的设置

表 4.1 操作界面说明

4.1 测试面板介绍

图 4.1 操作主界面

4.1.2 工具栏

图标	功能	图标	功能
4	连接设备	4	断开设备
	打开文件		保存文件
	开始采集测量结果		停止采集测量结果
Ш	创建迹线显示视图	, Ui	创建CCDF显示视图
	创建功率数值显示视图	f	删除当前显示视图
R	删除所有显示视图	9	自动设置
	错误列表		

表4.2 工具栏

4.1.3 菜单

1) 通用设置菜单

图 4.2 通道设置

4 操作指南

4.1 测试面板介绍

表4.3 通道设置菜单

通道设置	
设备选择	连接多个设备时,选择当前设置设备。
模式	设置通道测量模式为正常模式或仅平均模式。
频率	设置测量频率。
孔径	设置孔径大小。
测量平均	关闭、自动或手动设置平均次数,设置范围为 1~1024。增大测量平均次数可以降低测量噪声,但会增加测量时间。 平均复位可以清除缓冲区内的测量结果,重新缓存并计算,在平均次数较多时可有效减小测量时间。
步进检测	被测功率出现较大变化时,初始化滤波器提高测量速度。
通道偏置	在数学运算之前,设置应用于被测功率的通道偏差。

		••			
+#- *	功变动大贫困	分辨率			
保巧	· · · · · · · · · · · · · · · · · · ·	1	2	3	4
	26dBm ~ -30dBm	1	1	1	2
	-30dBm ~ -35dBm	1	1	2	16
	-35dBm ~ -40dBm	1	1	8	32
仅平均	-40dBm ~ -45dBm	1	1	16	64
	-45dBm ~ -50dBm	1	8	32	128
	-50dBm ~ -55dBm	4	64	64	256
	<-55dBm	4	64	128	256
	26dBm ~ -20dBm	1	1	1	4
	-20dBm ~ -25dBm	1	1	2	32
工業	-25dBm ~ -30dBm	1	1	8	64
止吊	-30dBm ~ -35dBm	1	8	32	128
	-35dBm ~ -40dBm	1	8	64	128
	<-40dBm	4	64	128	256

表4.4 自动平均次数

2)校零设置菜单

	内部校零	外部校零	
--	------	------	--

图 4.3 校零设置

4 操作指南

4.2 测试面板操作

	表4.5 校零设置菜单
校零	
内部校零	采用内部开关,不需要关闭信号源输出即可实现校零操作。
外部校氮	在仅平均模式下测量,尤其是小信号测量时需要进行外部校零,

此时必须关闭信号源输出。

3) 测量设置菜单

图 4.4 测量设置

表4.6 测量设置菜单

测量设置	
测量选择	选择当前测量,共4个。
测量单位	设置为对数或线性测量单位。
分辨率	设置测量结果显示分辨率。
和动测量	启用相对模式,点击相对功率设置参考值,计算当前测量值与参
	考值的相对测量结果。

4.2 测试面板操作

步骤一: 打开软件光盘中的"测试面板"文件夹, 运行"功率测量平台"。点击工具栏

_{连接设备},弹出窗口中选择测试仪器后点击"连接",如下图所示;

■ 设备连接	? 🗙
✓ 87235H-2203FA002	
☑ 选择所有设备	
连接	取消

图 4.6 设备连接窗口

- 4 操作指南
- 4.3 平均功率测量
 - 步骤二:测试面板默认打开平均功率数值显示窗口,默认测量模式为仅平均,如下图所示;

图 4.7 平均功率显示窗口

4.3 平均功率测量

87235 系列 USB 平均功率探头可实现平均功率测量。

具体操作过程如下:

- 步骤一:设置信号发生器幅度为 0dBm,频率为 1GHz,调制模式为关闭状态;
- 步骤二:打开信号发生器输出,运行 87235 测试面板,测量模式默认为仅平均模式, 设置频率为 1GHz,根据被测信号周期设置合适孔径或选用默认孔径;

・通道设置・					
模式:	仅当	平均			
频率:	1.0	000	GHz		
孔径:	50	.000	ms		
测量平均:	l	自动			
☑ 步进检测 	测		平均复位	Ŷ	
🔲 通道偏	置:	0.00	dB		

图 4.8 测量模式

步骤三:进行校零操作(当被测信号较小时,需关闭信号源输出进行外部校零);

步骤四:此时可在平均功率显示窗口观测被测信号功率值。

A1平均	测量1
1.000GHz	
-0.0	7 dBm
最小值: -0.07dBm	最大值: -0.07dBm

图 4.10 功率显示窗口

注 意

在测量较低电平信号(低于-40dBm),需要先进行外部校零,外部校零时需要关闭信号源输出,然后再进行测量,这样才能保证测量的准确度。 当功率低于-50dBm时,需要将[步进检测]设置为"关"状态,并设置[通道平均]为"手动", 平均次数大于 100 次。

5 远程控制

本章介绍了 87235 系列 USB 平均功率探头的程控基础、程控接口与配置方法,并简要的介绍了 I/O 仪器驱动库的概念及分类。以方便用户起步实现远程控制操作。具体内容包括:

- I/O库______52

5.1 远程控制基础

5.1.1 程控接口

具备远程控制功能的仪器一般支持三种程控接口:LAN、GPIB、USB,具体型号仪器 支持的端口类型由仪器本身功能决定。

程控接口	VISA 地址字符串(注释 1)	说明
LAN	原始套接字协议:	控者通过仪器后面板网
(Local Area	TCPIP::host_address::port::SOCKET	络端口连接仪器实现远
Network)		程控制。具体协议请参
		考: P38"5.1.1.1 LAN
		接口"。
GPIB	GPIB::primary address[::INSTR]	控者通过仪器后面板端
(IEC/IEEE		口连接仪器实现远程控
Bus		制。遵守IEC
Interface)		625.1/IEEE 418总线接
		口标准。具体请参考:
		P39"5.1.1.2 GPIB 接
		□"。
USB	USB:: <vendor< td=""><td>仪器后面板端口。</td></vendor<>	仪器后面板端口。
(Universal	ID>:: <product_id>::<serial_number>[::INSTR]</serial_number></product_id>	具体请参考:
Serial Bus)		P39"5.1.1.3 USB 接
		"

表 5.1 远程控制接口类型和 VISA 寻址字符串

注释 1: VISA 即虚拟仪器软件结构(Virtual Instrumentation Software Architecture), 是一套标准的软件接口函数库,用户可以使用该函数库通过 GPIB、RS232、LAN、USB 等 接口控制仪器。用户应首先在控制计算机上安装 VISA 库,使用 VISA 库实现远程仪器控制, 具体请参考所安装 VISA 库的用户手册。

5.1.1.1 LAN 接口

可使用 RJ45 通信电缆 (屏蔽或者非屏蔽的 5 类双绞线) 接入

5 远程控制

5.1 远程控制基础

10Mbps/100Mbps/1000Mbps 以太网,通过局域网内控制计算机进行远程控制。为实现局域网内远程控制,已经安装了接口适配器和 TCP/IP 网络协议,并配置了相应基于 TCP 协议的网络服务。

一般地, 安装的网络接口适配器有三种工作模式, 分别是:

- ➢ 10Mbps 以太网(IEEE802.3);
- ▶ 100Mbps 以太网(IEEE802.3u);
- ▶ 1000Mbps 以太网(IEEE802.3ab)。

接口适配器根据链路状况自动匹配合适的网络速度。通常,连接仪器的电缆长度不应超过 100 米。关于以太网的更多信息,请参考: <u>http://www.ieee.org</u>。

下面介绍 LAN 接口相关知识:

1) IP 地址

通过局域网对仪器进行远程控制时,应保证网络的物理连接畅通。将仪器的 IP 地址设置到主控计算机所在的子网内,例如:主控计算机的 IP 地址是 192.168.12.0,则仪器的 IP 地址应设为 192.168.12.XXX,其中 XXX 为 1~255 之间的数值。

建立网络连接时只需 IP 地址, VISA 寻址字符串形式如下:

TCPIP::host address::port::SOCKET

其中:

- ➤ TCPIP 表示使用的网络协议;
- host address 表示仪器的 IP 地址或者主机名称,用于识别和控制被控仪器;
- ▶ port 标识套接字端口号;
- ➢ SOCKET 表示原始网络套接字资源类。

举例:

建立原始套接字连接时可使用:

TCPIP::192.1.2.3::5000::SOCKET

提 示

程控系统中多仪器识别方法

若网络中连接多台仪器,采用仪器单独的IP地址和关联的资源字符串区分。主控计算机 使用各自的VISA资源字符串识别仪器。

2) 套接字通信

TCP/IP 协议通过局域网套接字在网络中连接该仪器。套接字是计算机网络编程中使用的一个基本方法,它使得使用不同硬件和操作系统的应用程序得以在网络中进行通信。这种方法通过端口(port)使仪器与计算机实现双向通信。

套接字是专门编写的一个软件类, 里面定义了 IP 地址、设备端口号等网络通信所必需的信息, 整合了网络编程中的一些基本操作。在操作系统中安装了打包的库就可以使用套接

字。两个常用的套接字库是 UNIX 中应用的伯克利(Berkeley)套接字库和 Windows 中应用的 Winsock 库。

仪器中的套接字通过应用程序接口(API)兼容 Berkeley socket 和 Winsock。此外,还兼容其他标准套接字 API。通过 SCPI 命令控制仪器时,程序中建立的套接字程序发出命令。仪器的套接字端口号固定为 5000。

5.1.1.2 GPIB 接口

GPIB 是唯一专为仪器控制设计的总线,目前仍广泛应用于自动测试系统中。为实现远 程控制,主控计算机需要首先安装 GPIB 总线卡,驱动程序以及 VISA 库。通信时,主控计 算机通过 GPIB 地址寻址被控仪器,用户可更改被控仪器的 GPIB 地址,防止整个系统中由 于地址冲突引起的通信失败。

GPIB及其相关接口定义在ANSI/IEEE 488.1-1987 标准和ANSI/IEEE 488.2-1992 标准 中有详细的描述。具体标准细节请参考IEEE网站: http://www.ieee.org。

GPIB 连接时,需注意以下几点:

- ▶ 通过 GPIB 总线组件的测试系统,最多含有 15 台设备;
- 传输电缆总长度不超过 20 米,或者不超过系统中仪器数量的两倍;
- 通常,设备间传输电缆最大长度不超过2米;
- 若并行连接多台仪器,需要使用"或"连接线;
- ➢ IEC 总线电缆的终端应该连接仪器或控者计算机。

5.1.1.3 USB 接口

为实现 USB 程控, 需要通过 USB B 型口连接计算机和仪器, 并事先安装 VISA 库, VISA 自动检测和配置仪器以建立 USB 连接, 而不需要输入仪器地址字符串或安装单独的驱动程序。

USB 地址:

寻址字符串格式: USB::<vendor ID>::<product ID>::<serial number>[::INSTR] 其中:

- <vendor ID> 代表生产厂家代号;
- ➤ <product ID> 代表仪器代号;
- ➤ <serial number> 代表仪器序列号。

示例:

USB::0x0AAD::0x00C6::100001::INSTR 0x0AAD: 生产厂家代号; 0xC6: 仪器代号; 100001: 是仪器的序列号。

5.1.2 消息

数据线上传输的消息分为以下两类:

5 远程控制

5.1 远程控制基础

1) 接口消息

接口消息是 GPIB 总线特有的消息,只有具备 GPIB 总线功能的仪器才响应接口消息。 主控计算机向仪器发送接口消息时,首先需要拉低 attention 线,然后接口消息才能通过数 据线传送给仪器。

2) 仪器消息

有关仪器消息的结构和语法,具体请参考章节 "5.1.3 SCPI命令"。根据传输方向的不同, 仪器消息可分为命令和仪器响应。如不特别声明,所有程控接口使用仪器消息的方法相同。

a) 命令:

命令(编程消息)是主控计算机发送给仪器的消息,用于远程控制仪器功能并查询状态 信息。命令被划分为以下两类:

- ▶ 根据对仪器的影响:
 - 一 设置命令: 改变仪器设置状态, 例如: 复位或设置频率等。
 - 一 查询命令:查询并返回数据,例如:识别仪器或查询参数值。查询命令以后缀
 问号结束。
- ▶ 根据标准中的定义:
 - 通用命令:由IEEE488.2定义功能和语法,适用所有类型仪器(若实现)用于
 实现:管理标准状态寄存器、复位和自检测等。
 - 一 仪器控制命令: 仪器特性命令,用于实现仪器功能。例如: 设置频率。语法同
 样遵循SCPI规范。

b) 仪器响应:

仪器响应(响应消息和服务请求)是仪器发送给计算机的查询结果信息。该信息包括测 量结果、仪器状态等。

5.1.3 SCPI 命令

5.1.3.1 SCPI 命令简介

SCPI(Standard Commands for Programmable Instruments——可程控设备的标准命 令)是一个基于标准 IEEE488.2 建立的,适合所有仪器的命令集。其主要目的是为了使相同 功能具有相同的程控命令,以实现程控命令的通用性。

SCPI 命令由命令头和一个或多个参数组成,命令头和参数之间由空格分开,命令头包 含一个或多个关键字段。命令直接后缀问号即为查询命令。命令分为通用命令和仪器专用命 令,它们的语法结构不同。SCPI 命令具备以下特点:

- 1) 程控命令面向测试功能,而不是描述仪器操作;
- 2) 程控命令减少了类似测试功能实现过程的重复,保证了编程的兼容性;
- 3) 程控消息定义在与通信物理层硬件无关的分层中;
- 4) 程控命令与编程方法和语言无关, SCPI 测试程序易移植;
- 5) 程控命令具有可伸缩性,可适应不同规模的测量控制;
- 6) SCPI 的可扩展性, 使其成为"活"标准。

如果有兴趣了解更多关于SCPI的内容,可参考:

- IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation. New York, NY, 1998.
- IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols and Comment Commands for Use with ANSI/IEEE Std488.1-1987. New York, NY, 1998.

Standard Commands for Programmable Instruments(SCPI) VERSION 1999.0.
 87235系列USB平均功率探头的程控命令集合、分类及说明,具体请参考:

- 1) 程控手册附录 A SCPI 命令速查表;
- 2) 程控手册"3 程控命令"章节;

5.1.3.2 SCPI 命令说明

1) 通用术语

下面这些术语适用本节内容。为了更好的理解章节内容, 您需要了解这些术语的确切定义。

a) 控制器

控制器是任何用来与 SCPI 设备通讯的计算机。控制器可能是个人计算机、小型计算机 或者卡笼上的插卡。一些人工智能的设备也可作为控制器使用。

b) 设备

设备是任何支持 SCPI 的装置。大部分的设备是电子测量或者激励设备,并使用 GPIB 接口通讯。

c) 程控消息

程控消息是一个或者多个正确格式化过的 SCPI 命令的组合。程控消息告诉设备怎样去测量和输出信号。

d) 响应消息

响应消息是指定 SCPI 格式的数据集合。响应消息总是从设备到控制器或者侦听设备。 响应消息告诉控制器关于设备的内部状态或测量值。

e) 命令

命令是指满足 SCPI 标准的指令。控制设备命令的组合形成消息。通常来说,命令包括 关键字、参数和标点符号。

f) 事件命令

事件型程控命令不能被查询。一个事件命令一般没有与之相对应的前面板按键设置,它 的功能就是在某个特定的时刻触发一个事件。 5 远程控制

5.1 远程控制基础

g) 查询

查询是一种特殊类型的命令。查询控制设备时,返回适合控制器语法要求的响应消息。 查询语句总是以问号结束。

2) 命令类型

SCPI 命令分为两种类型:通用命令和仪器专用命令。通用命令由 IEEE 488.2 定义,用 来管理宏、状态寄存器、同步和数据存储。因通用令均以一个星号打头,因此很容易辨认。 例如*IDN?、*OPC、*RST 都是通用命令。通用命令不属于任何仪器专用命令,仪器采用同 一种方法解释该类命令,而不用考虑命令的当前路径设置。

仪器专用命令因包含冒号(:),因此容易辨认。冒号用在命令表达式的开头和关键字的 中间,例如:FREQuency[:CW?]。根据仪器内部功能模块,将仪器专用命令划分为对应的 子系统命令子集合。例如,功率子系统(:POWer)包含功率相关命令,而状态子系统(:STATus) 包含状态控制寄存器的命令。

3) 仪器专用命令语法

符号	含义	举例
Ι	在关键字和参数之间的竖号代表多种选项。	[:SENSe]:BANDwidth BWIDth HIGH LOWer BANDwidth 和 BWIDth 是选 项, HIGH 和 LOWer 是选项。
۵	方括号表示被包含的关键字或者参数在构成命令 时是可选的。这些暗含的关键字或者参数甚至在 它们被忽略时命令也会被执行。	[:SENSe]:BANDwidth? SENSe 是可选项。
< >	尖括号内的部分表示在命令中并不是按照字面的 含义使用。它们代表必需包含的部分。	<pre>[:SENSe]:FREQency[:CW FIXe d] <val>[unit] 该命令中, <val> 必须用实际的频率替代。 [unit]是可省略的单位。 例如: FREQ 3.5GHz FREQ 3.5e+009</val></val></pre>
{}	大括号内的部分表示其中的参数可选。	MEMory:TABLe:FREQuency <val>{,<val>} 例如:MEM:TABL:FREQ 5e7</val></val>

表 5.2 命令语法中的特殊字符

表 5.3 命令语法

字符、关键字和语法	举例
大写的字符代表执行命令所需要的最小字符集	[:SENSe]:FREQuency[:CW FIXed]?,
合。	FREQ 是命令的短格式部分。
命令的小写字符部分是可选择的;这种灵活性的 格式被称为"灵活地听"。更多信息请参照"命令参 数和响应"部分。	:FREQuency :FREQ,:FREQuency 或 者:FREQUENCY, 其中任意一个都是正确的。
当一个冒号在两个命令助记符之间,它将命令树 中的当前路径下移一层。更多消息请参照"命令 树"的命令路径部分。	:TRIGger:MODE? TRIGger 是这个命令的最顶层关键字。
如果命令包含多个参数,相邻的参数间由逗号分 隔。参数不属于命令路径部分,因此它不影响路 径层。	MEMory:TABLe:FREQuency <val>{,<val>}</val></val>
分号分隔相邻的 2 条命令,但不影响当前命令路 径。	:FREQ 2.5GHZ;:POW 10DBM
空白字符, 例如 <space>或者<tab>, 只要不出现</tab></space>	:FREQ uency 或者:POWer :LEVel6.2 是
在关键字之间或者关键字之中,通常是被忽略	不允许的。
的。然而,你必须用空白字符将命令和参数分隔	在:LEVel 和 6.2 之间必须由空格隔开。
开来,且不影响当前路径。	即:POWer:LEVel 6.2

一个典型的命令是由前缀为冒号的关键字构成。关键字后面跟着参数。下面是一个语法 声明的例子。

[:SOURce]:POWer[:LEVel] MAXimum|MINimum

在上面的例子中, 命令中的[:LEVel]部分紧跟着:POWer, 中间没有空格。紧跟着[:LEVel] 的部分: MINimum|MAXimum 是参数部分。在命令与参数之间有一个空格。语法表达式的 其它部分说明见表 5.2 和 5.3。

4) 命令树

大部分远程控制编程会使用仪器专用命令。解析该类命令时,SCPI使用一个类似于文件系统的结构,这种命令结构被称为命令树。

顶端命令是根命令,简称"根"。命令解析时,依据树结构遵循特定的路径到达下一层命 令。例如::POWer:ALC:SOURce?,其中,:POWer 代表 AA,:ALC 代表 BB,:SOURce 代表 GG,整个命令路径是(:AA:BB:GG)。

仪器软件中的一个软件模块——命令解释器,专门负责解析每一条接收的 SCPI 命令。 命令解释器利用一系列的分辨命令树路径的规则,将命令分成单独的命令元。解析完当前命 令后,保持当前命令路径不变,这样做的好处是,因为同样的命令关键字可能出现在不同的 路径中,更加快速有效的解析后续命令。开机或*RST(复位)仪器后,重置当前命令路径 为根。 5 远程控制

5.1 远程控制基础

5) 命令参数和响应

参数类型	响应数据类型
数值型	实数或者整数
扩展数值型	整数
离散型	离散型
布尔型	数字布尔型
字符串	字符串
44	确定长度的块
	不确定长度的块
	十六进制
非十进制的数值类型	八进制
	二进制

表 5.4 SCPI 命令参数和响应类型

SCPI 定义了不同的数据格式在程控和响应消息的使用中以符合"灵活地听"和"精确地讲"的原则。更多的信息请参照 IEEE488.2。"灵活地听"指的是命令和参数的格式是灵活的。

例如 USB 平均功率探头设置频率偏移状态命令 :FREQuency:OFFSet:STATe ON|OFF|1|0,

以下命令格式都是设置频率偏移功能开:

:FREQuency:OFFSet:STATe ON, :FREQuency:OFFSet:STATe 1,

:FREQ:OFFS:STAT ON, :FREQ:OFFS:STAT 1

不同参数类型都有一个或多个对应的响应数据类型。查询时,数值类型的参数将返回一 种数据类型,响应数据是精确的,严格的,被称为"精确地讲"。

例如,查询功率状态(:POWer:ALC:STATe?),当其为开时,不管之前发送的设置命令 是:POWer:ALC:STATe 1 或者:POWer:ALC:STATe ON,查询时,返回的响应数据总是 1。

a) 数值参数

仪器专用命令和通用命令中都可使用数值参数。数值参数接收所有的常用十进制计数法, 包括正负号、小数点和科学记数法。如果某一设备只接收指定的数值类型,例如整数,那么 它自动将接收的数值参数取整。

以下是数值类型的例子:

0	无小数点
100	可选小数点
1.23	带符号位
4.56e <space>3</space>	指数标记符 e 后可以带空格
-7.89E-01	指数标记符 e 可以大写或小写
+256	允许前面加正号
5	小数点可先行

b) 扩展的数值参数

大部分与仪器专用命令有关的测量都使用扩展数值参数来指定物理量。扩展数值参数接收所有的数值参数和另外的特殊值。所有的扩展数值参数都接收MAXimum和MINimum 作

为参数值。其它特殊值,例如: UP 和 DOWN 是否接收由仪器解析能力决定,其 SCPI 命令 表中会列出所有有效的参数。

注意:扩展数值参数不适用于通用命令或是 STATus 子系统命令。

扩展数值参数举例:

101	数值参数
1.2GHz	GHz 可以被用作指数(E009)
200MHz	MHz 可以被用作指数(E006)
-100mV	-100 毫伏
10DEG	10 度
MAXimum	最大的有效设置
MINimum	最小的有效设置
UP	增加一个步进
DOWN	减少一个步进

c) 离散型参数

当需要设置的参数值为有限个时,使用离散参数来标识。离散参数使用助记符来表示每 一个有效的设置。像程控命令助记符一样,离散参数助记符有长短两种格式,并可使用大小 写混合的方式。

下面的例子、离散参数和命令一起使用。 :TRIGger[:SEQuence]:SOURce BUS|IMMediate|EXTernal BUS GPIB,LAN,RS-232 触发 IMMediate 立刻触发 外部触发 EXTernal

d) 布尔型参数

布尔参数代表一个真或假的二元条件,它只能有四个可能的值。

布尔参数举例:

ON	逻辑真
OFF	逻辑假
1	逻辑真
0	逻辑假

e) 字符串型参数

字符串型参数允许 ASCII 字符串作为参数发送。单引号和双引号被用作分隔符。 下面是字符串型参数的例子。

'This is Valid' "This is also Valid" 'SO IS THIS'

f) 实型响应数据

大部分的测试数据是实数型, 其格式可以为基本的十进制计数法或科学计数法, 大部分 的高级程控语言均支持这两种格式。

实数响应数据举例:

1.23E+0

5 远程控制

5.1 远程控制基础

-1.0E+2 +1.0E+2 0.5E+0 0.23 -100.0 +100.0 0.5

g) 整型响应数据

整数响应数据是包括符号位的整数数值的十进制表达式。当对状态寄存器进行查询时, 大多返回整数型响应数据。

整数响应数据事例:

0	符号位可选
+100	允许先行正号
-100	允许先行负号
256	没有小数点

h) 离散响应数据

离散型响应数据和离散型参数基本一样,主要区别是离散型响应数据的返回格式只为大 写的短格式。

离散响应数据示例:

INTernal	稳幅方式为内部
EXTernal	稳幅方式为外部
MMHead	稳幅方式为毫米波源模块

i) 数字布尔型响应数据

布尔型的响应数据返回一个二进制的数值1或者0。

j) 字符串型响应数据

字符串响应数据和字符串参数是同样的。主要区别是字符串响应数据的分隔符使用双引号,而不是单引号。字符串响应数据还可嵌入双引号,并且双引号间可以无字符。下面是一些字符串型响应数据的例子:

"This is a string"

"one double quote inside brackets: ("")"

6) 命令中数值的进制

命令的值可以用二进制,十进制,十六进制或者八进制的格式输入。当用二进制,十六 进制或者八进制时,数值前面需要一个合适的标识符。十进制(默认格式)不需要标识符, 当输入一个数值前面没有表示符时,设备会确保其是十进制格式。下面的列表显示了各个格 式需要的表示符:

- ▶ #B表示这个数字是一个二进制数值;
- #H表示这个数字是一个十六进制数值;

> #Q 表示这个数字是一个八进制数值。

下面是 SCPI 命令中十进制数 45 的各种表示:

#B101101

#H2D

#Q55

下面的例子用十六进制数值 000A 设置 RF 输出功率为 10dBm(或者当前选择单位的 等数值的值,如 DBUV 或者 DBUVEMF)。

:POW #H000A

在使用非十进制格式时,一个测量单位,如 DBM 或者 mV,并没有和数值一起使用。

7) 命令行结构

一条命令行或许包含多条 SCPI 命令,为表示当前命令行结束,可采用下面的方法:

- ▶ 回车;
- ➢ 回车与 EOI;
- ▶ EOI 与最后一个数据字节。

命令行中的命令由分号隔开,属于不同子系统的命令以冒号开头。例如:

MMEM:COPY "Test1", "MeasurementXY";:HCOP:ITEM ALL

该命令行包含两条命令, 第一条命令属于 MMEM 子系统, 第二条命令属于 HCOP 子系统。若相邻的命令属于同一个子系统、命令路径部分重复、命令可缩写。例如:

HCOP:ITEM ALL;:HCOP:IMM

该命令行包含两条命令,两条命令均属于 HCOP 子系统,一级相同。所以第二条命令可从 HCOP 的下级开始,并可省略命令开始的冒号。可以缩写为如下命令行:

HCOP:ITEM ALL;IMM

5.1.4 命令序列与同步

IEEE488.2 定义了交迭命令和连续命令之间的区别:

- > 连续命令是指连续执行的命令序列。通常各条命令执行速度较快;
- 交迭命令是指下条命令执行前,前条命令未自动执行完成。通常交迭命令的处理时间较长并允许程序在此期间可同步处理其它事件。

即使一条命令行中的多条设置命令,也不一定按照接收的顺序依次执行。为了保证命令 按照一定的顺序执行,每条命令必须以单独的命令行发送。

举例:命令行包含设置和查询命令

一条命令行的多条命令若包含查询命令,查询结果不可预知。下面的命令返回固定值: :FREQ:STAR 1GHZ;SPAN 100;:FREQ:STAR?

返回值: 100000000 (1GHz)

下面的命令返回值不固定::FREQ:STAR 1GHz;STAR?;SPAN 1000000

返回结果可能是该条命令发送前仪器当前的起始频率值,因为主机程序会接收完毕命令 消息后,才逐条执行命令。若主机程序接收命令后执行,返回结果也可能是1GHz。

提示

设置命令与查询命令分开发送

一般规则:为保证查询命令的返回结果正确,设置命令和查询命令应在不同的程控消息 中发送。

为了防止命令的交迭执行,可采用多线程或者命令: *OPC、*OPC?或者*WAI,只有硬件设置完成后,才执行这三种命令。编程时,计算机可强制等待一段时间以同步某些事件。 下面分别予以说明:

> 控者程序使用多线程

多线程被用于实现等待命令完成和用户界面及程控的同步,即单独的线程中等待 *OPC? 完成,而不会阻塞GUI 或程控线程的执行;

> 三种命令在同步执行中的用法如下表:

方法	执行动作	编程方法
*OPC	命令执行完后,置位 ESR 寄存 器中的操作完成位。	置位 ESE BIT0; 置位 SRE BIT5; 发送交迭命令和*OPC; 等待服务请求信号(SRQ) 服务请求信号代表交迭命令执行完成。
*OPC?	停止执行当前命令,直到返回 1。只有 ESR 寄存器中的操作完成位置位时,该 命令才返回,表明前面命令处理完成。	执行其它命令前终止当前命令的处理, 在当前命令后直接发送该命令。
*WAI	执行*WAI 前,等待发送完所有命令, 再继续处理未完成的命令。	执行其它命令前终止当前命令的处理, 在当前命令后直接发送该命令。

表 5.5 命令语法

5.1.5 状态报告系统

状态报告系统存储当前仪器所有的操作状态信息及错误信息。它们分别存储在状态寄存 器和错误队列中,并可通过程控接口查询。

5.1.5.1 状态寄存器组织结构

寄存器分类说明如下:

1) STB, SRE

状态字节 (STB) 寄存器和与之关联的屏蔽寄存器——服务请求使能寄存器 (SRE) 组成了状态报告系统的最高层寄存器。STB通过收集低层寄存器信息,保存了仪器的大 致工作状态。

2) ESR, SCPI 状态寄存器

STB接收下列寄存器的信息:

- ▶ 事件状态寄存器(ESR)与事件状态使能(ESE)屏蔽寄存器两者相与的值;
- ➢ SCPI状态寄存器包括: STATus:OPERation 与 STATus:QUEStionable 寄存

器

(SCPI定义),它们包含仪器的具体操作信息。所有的SCPI状态寄存器具备相同的内部结构(具体请参考程控手册"2.1.5.2 SCPI状态寄存器结构"章节

5 远程控制

5.1 远程控制基础

部分)。

3) IST,PPE

类似SRQ, IST标志("Individual STatus")单独的一位,由仪器全部状态组合而成。关联的并行查询使能寄存器(PPE(parallel poll enable register))决定了STB的哪些数据位作用于IST标志。

4) 输出缓冲区

存储了仪器返回给控者的消息。它不属于状态报告系统,但是决定了STB的MAV 位的值。

以上寄存器具体说明请参考程控手册"2.1.5状态报告系统"章节部分。 请参考图5.1的状态寄存器的等级结构图。

提示

SRE, ESE

服务请求使能寄存器 SRE 可被用作 STB 的使能部分。同理, ESE 可被用作 ESR 的使能 部分。

5.1.5.2 状态报告系统的应用

状态报告系统用于监测测试系统中的一个或多个仪器状态。为了正确实现状态报告系统的功能,测试系统中的控者必须接收并评估所有仪器的信息,使用的标准方法包括:

- 1) 仪器发起的服务请求 (SRQ);
- 串行查询总线系统中的所有的仪器,由系统中的控者发起,目的是找到服务请求发起者及原因;
- 3) 并行查询所有仪器;
- 4) 程控命令查询特定仪器状态。

具体使用方法请参考程控手册"2.1.5状态报告系统"章节部分。

5.1.6 编程注意事项

1) 改变设置前请初始化仪器状态

远程控制设置仪器时,首先需要初始化仪器状态(例如发送"*RST"),然后再实现 需要的状态设置。

2) 命令序列

一般来说,需要分开发送设置命令和查询命令。否则,查询命令的返回值会根据当 前仪器操作顺序而变化。

3) 故障反应

服务请求只能由仪器自己发起。测试系统中的控者程序应指导仪器在出现错误时主 动发起服务请求,进而进入相应的中断服务程序中进行处理。

4) 错误队列

控者程序每次处理服务请求时, 应查询仪器的错误队列而不是状态寄存器, 来获取

5.2 仪器程控端口与配置

更加精确的错误原因。尤其在控者程序的测试阶段, 应经常查询错误队列以获取控者发送给仪器的错误命令。

5.2 仪器程控端口与配置

USB程控系统采用USBTMC协议控制该仪器。

5.2.1 建立连接

使用USB电缆将87235系列USB平均功率探头与外部控者(计算机)连接起来。

5.2.2 接口配置

该仪器的VID和PID分别为0x04B4、0x1010,序列号标注在仪器上。这三项接口信息是 固定的,用户不可配置。

5.3 VISA 接口基本编程方法

下面举例说明如何使用VISA库实现仪器程控编程的基本方法。以C++语言为例。

5.3.1 安装 VISA 库

为实现远程控制首先需要安装VISA库。其中,VISA库封装了底层的VXI、GPIB、LAN 及USB接口的底层传输函数,方便用户直接调用。USB平均功率探头支持的编程接口为: USB。这些接口与VISA库和编程语言结合使用可以远程控制USB平均功率探头。

5.3.2 生成全局变量

首先生成其它程序模块需要调用的全局变量,例如: 仪器句柄变量。以下示例程序需要 包含下面的全局变量:

ViSession iDevHandle;

ViSession iDefaultRM;

const char rgcDevRsc[MAX_RSC_LEN] = "USB0::04B4::1010::2019001::0::INSTR"; const int iTmo = 5000;

其中,常量rgcDevRsc代表仪器描述符,"USB0"代表控者,"04B4"代表仪器的厂商ID, 1010为产品ID,2020001为产品串号。

若通过GPIB接口控制仪器, GPIB地址是"20", 那么该变量值是:

const char rgcDevRsc[MAX_RSC_LEN] = "GPIB0::20::INSTR";

若通过LAN Socket接口控制仪器, IP地址为192.168.1.1, 端口号为5025, 则那么该变 量值是:

const char rgcDevRsc[MAX_RSC_LEN] = "TCPIP0::192.168.1.1::5025::SOCKET";

若通过LAN接口控制仪器, IP地址为192.168.1.1, 则那么该变量值是:

const char rgcDevRsc[MAX_RSC_LEN] = "TCPIP0::192.168.1.1::INSTR";

```
5 远程控制
5.3 VISA 接口基本编程方法
5.3.2 初始化控者
下面的示例说明了如何打开并建立VISA库与仪器(仪器描述符指定)的通信连接。
  初始化控者:打开默认资源管理器并且返回仪器句柄iDevHandle。
void InitController()
  {
    ViStatus iStatus;
    iStatus = viOpenDefaultRM(&iDefaultRM);
    iStatus = viOpen(iDefaultRM, rgcDevRsc, VI_NULL, VI_NULL, &iDevHandle);
  }
5.3.3 初始化仪器
  下面的示例初始化仪器默认状态,并且清空状态寄存器。
  void InitDevice()
  {
    ViStatus iStatus;
    ViUInt32 uiRetCnt;
    iStatus = viWrite(iDevHandle, "*CLS\n", strlen("*CLS\n"), &uiRetCnt); //状态复
    位
    iStatus = viWrite(iDevHandle, "*RST\n", strlen("*RST\n"), &uiRetCnt); //仪器复
    位
  }
5.3.4 发送设置命令
  下面的示例说明如何设置87235系列USB平均功率探头的频率。
```

void SimpleSettings()

{

```
ViStatus iStatus;
ViUInt32 uiRetCnt;
//设置频率128MHz
iStatus = viWrite(iDevHandle, "FREQ 1.2e8\n", strlen("FREQ 1.2e8\n"),
&uiRetCnt);
```

```
}
```

5.3 VISA 接口基本编程方法

5.3.5 读取测量仪器状态

```
下面的示例说明了如何读取仪器的设置状态。
   void ReadSettings()
  {
     ViStatus iStatus; //状态
     ViUInt32 uiRetCnt; //读返回的字节数
     char rgcBuf[256]; //临时缓冲区
     char* pcCmd = NULL; //命令指针
     //杳询频率
     pcCmd = "FREQ?\n";
     iStatus = viWrite(iDevHandle, pcCmd, strlen(pcCmd), &uiRetCnt);
     Sleep(10);
     iStatus = viRead(iDevHandle, rgcBuf, sizeof(rgcBuf), &uiRetCnt);
     //打印调试信息
     printf("频率为%s", rgcBuf);
  }
5.3.6 命令同步
```

void SweepSync()

{

```
ViStatus iStatus; //状态
ViUInt32 uiRetCnt; //读返回的字节数
ViEventType eType; //事件类型
ViEvent eEvent; //事件
int iStat; //状态字
char rgcOpcOk[256]; //OPC串
char* pcCmd = NULL; //命令指针
```

5.4 I/O 库

```
pcCmd = "ABOR;INIT:IMM;*WAI\n";
iStatus = viWrite(iDevHandle, "pcCmd ", strlen(pcCmd), &uiRetCnt);
//等待扫描结束的方法2: 使用 *OPC?
pcCmd = "ABOR;INIT:IMM; *OPC?\n";
iStatus = viWrite(iDevHandle, "pcCmd ", strlen(pcCmd), &uiRetCnt);
iStatus = viRead(iDevHandle, rgcOpcOk, 2, &uiRetCnt); //等待*OPC返回"1"
//主程序继续.....
```

```
}
```

5.4 I/O 库

5.4.1 I/O 库概述

I/O库是为仪器预先编写的一些软件程序库被称为仪器驱动程序,即:仪器驱动器 (Instrument driver),它是介于计算机与仪器硬件设备之间的软件中间层,由函数库、实 用程序、工具套件等组成,是一系列软件代码模块的集合,该集合对应于一个计划的操作, 如配置仪器、从仪器读取、向仪器写入和触发仪器等。它驻留在计算机中,是连接计算机和 仪器的桥梁和纽带。通过提供方便编程的高层次模块化库,用户不再需要学习复杂的针对某 个仪器专用的低层编程协议,采用仪器驱动器是快速开发测试测量应用的关键。

图5.2 仪器驱动器结构模型

从功能上看,一个通用的仪器驱动器一般由功能体、交互式开发者接口、编程开发者接口、子程序接口和I/O接口五部分组成,如图5.2所示。

具体说明如下:

- 1) 功能体。这是仪器驱动器的主功能部分,可以理解为仪器驱动器的框架程序;
- 2) 交互开发者接口。为方便用户使用,支持仪器驱动器开发的应用开发环境通常提供 图形化的交互开发接口。例如,Labwindows/CVI中,函数面板就是一种交互开 发接口。函数面板中,仪器驱动器函数的各个参数都是以图形化的控件形式表示;
- 编程开发者接口。它是应用程序调用仪器驱动器函数的软件接口,例如 Windows 系统下仪器驱动器的动态链接库文件.dl;
- 4) I/O 接口。它完成仪器驱动器与仪器间的实际通信。可以使用总线专用 I/O 软件,

5.4 I/O 库

如 GPIB、RS-232;也可以使用跨多个总线使用的通用的标准 I/O 软件: VISA I/O;

5) 子程序接口。它是仪器驱动器访问其它一些支持库的软件接口,例如数据库、FFT 函数等。当仪器驱动器为完成其任务而需调用其它软件模块、操作系统、程控代码 库及分析函数库时,将用到子程序接口。

5.4.2 I/O 库安装与配置

伴随着测试领域的应用经历了从传统仪器到虚拟仪器等不同的发展阶段,并且为了解决 自动测试系统中仪器可互换性和测试程序的可重用性,仪器驱动程序经历了不同的发展过程。 目前比较流行通用的驱动器是IVI(Interchangeable Virtual Instruments)仪器驱动器,它 基于IVI规范,定义了新的仪器编程接口,以及插入类驱动程序和 VPP 架构到 VISA 上, 使测试应用程序与仪器硬件完全独立,并增加了独有的仪器仿真、范围检测、状态缓存等功 能,提高了系统运行的效率与真正实现了仪器互换。

IVI驱动分为两种类型: IVI-C与IVI-COM, IVI-COM基于微软组件对象模型(COM)技术,采用 COM API 的形式; IVI-C基于 ANSI C,采用 C API 的方式。这两种驱动类型都 是遵照 IVI 规范定义的仪器类来设计的,它们的应用开发环境也都相同,包括 Visual Studio, Visual Basic, Agilent VEE, LabVIEW, CVI/LabWindows等。

为满足不同用户在不同开发环境下的需求,目前需要提供两种驱动形式。USB平均功率 探头的IVI驱动利用Nimbus Driver Studio开发,直接生成IVI-COM与IVI-C驱动及程序安装 包、具体安装配置请参阅您所选择的控制卡及I/O库的随机文档资料。

安装后的IVI驱动分为: IVI固有功能组与仪器类功能组(基本功能组和扩展功能组)。具体功能分类、函数和属性说明可参考驱动自带的帮助文档。

提示

配置端口以及安装 IO 库

在使用计算机控制 USB 平均功率探头之前,请确认您已正确安装且配置必要的端口和 I/O 库。

6.1 工作原理

6 故障诊断与返修

本章将告诉您如何发现问题并接受售后服务。并说明本产品出错信息。

如果您购买的 87235 系列 USB 平均功率探头,在操作过程中遇到一些问题,或您需要购买相关部件或附件,本单位将提供完善的售后服务。

通常情况下,产生问题的原因来自硬件、软件或用户使用不当,一旦出现问题请您及时 与我们联系。如果您所购买的产品处于保修期,我们将按照保修单上的承诺对您的 USB 平 均功率探头进行免费维修;如果超过保修期,具体维修费用按照合同要求收取。

6.1 工作原理

为了便于用户了解 87235 系列 USB 平均功率探头的功能,更好的解决操作过程中遇到的问题,本节介绍 USB 平均功率探头的基本工作原理及硬件原理框图。

图 6.1 整机硬件原理框图

本项目采用二极管作为功率传感器件,当 USB 平均功率探头进行脉冲功率的峰值包络 测量时,其内部平衡配置的双二极管检波器,首先对输入的微波脉冲调制信号进行检波,转 变为两路脉冲调制包络信号。通道调理板前端有两路微波开关控制 USB 平均功率探头为测 量状态或者内部校零状态。当开关打开时进行功率测量,正负检波信号进行线性放大,并分 别进入四路差分放大器,两路信号分别为高低量程,然后进入四通道的 ADC 进行采样。当 开关关闭时进行内部校零。本项目采用实时采样技术实现数据的采集,14 位 4 通道 ADC 以 主时钟 20Msample/s 的速率进行模数转换,而转换后的数据锁存并写入 DDR3 中的速率, 则是由时基单元电路的取样速率发生器给出的取样时钟控制的。存入 DDR3 的采样数据,

6.2 故障诊断与排除

在每个采集周期结束时,由主处理器读出并经过数字滤波、快速校准补偿等进一步处理后, 得到可供显示的波形数据。USB 平均功率探头通过符合 USBTMC 标准的通用串行总线支持 最高 480Mb/s 的高数据传输速率,将测量结果上传至主控计算机显示。

本项目在一个 USB 平均功率探头中实现台式峰值功率计的功能,因此功率数据的补偿 直接针对整机,不会产生传统功率测量方案中探头和功率计主机配合使用产生的误差,因此 不再需要校准源,也不再需要校准操作,可降低体积和功耗,使用更方便,测试效率更高。 对整机进行的校准数据存储于 FLASH 中,在温度补偿算法的实现中,处理器使用位于二极 管传感元件附近的热敏电阻持续监视产品温度。

本项目研制的 USB 平均功率探头分为四个频段的产品,分别为 10MHz~6GHz、 10MHz~18GHz、10MHz~33GHz、10MHz~50GHz,整机电路板和结构件相同,通过检 波组件实现频段划分,实现产品的系列化,同时使产品易于生产、维修,可靠性和稳定性高。

6.2 故障诊断与排除

提示

故障诊断与指导

本部分是指导您当 87235 系列 USB 平均功率探头出现故障时如何进行简单的判断和处理,如果必要请您尽可能准确的把问题反馈给厂家,以便我们尽快为您解决。

下面按照功能类型,分类列出故障现象和排除方法。

6.2.1 找不到 USB 设备

如果加电后在计算机设备管理器中找不到 USB 设备,请按下面所列步骤进行检查:

步骤 1. 请确认 USB 电缆连接正常, 查看 USB 电源供电是否正常;

步骤 2. 请确认是否连接有多个 USB 设备,必要时请使用带外部电源的 USB HUB;

步骤 3. 主机是否正确安装设备 VISA 库和驱动程序。

6.2.2 状态指示灯不亮

检查主控计算机 USB2.0 接口工作是否正常,更换其它 USB 接口观察指示灯是否工作, 或者使用其它设备例如鼠标、键盘、U 盘等验证 USB 接口是否供电正常。如果不正常,检 查外部线路,找出故障,排除后,重新连接仪器上电。如果确认为仪器本身电源引起的,则 需将产品发回厂家维修。

6.2.3 意外现象

在使用过程中,产生意外现象的原因很多。可以参照下面的检测步骤,确定仪器产生问题的原因,通常这些检测方法能解决问题或判断清楚产生问题的原因。

- ▶ 检查 USB 电缆机械连接是否正确,电气特性是否兼容;
- ➢ 当做了某些设置后出现问题时,请检查所做的操作,确定所有的设置都正确。如果

6.3 错误信息

测试完成,请检查测量结果是否与被测信号相符,是否符合仪器的性能指标;

当仪器出现意外结果时,如果不能确定所做的设置是否正确,重新插拔后再根据被 测信号和测试需求进行设置。

6.3 错误信息

在实际使用过程中,如果操作不当或配置不正确,系统会自动提供错误信息。用户可根 据错误提示大致判断问题类型,并采取相应措施排除故障或决定返修。

在用户功率测试面板中,单击错误列表图标,可以查看最近的出错信息。 有关错误信息的详细说明,请参考《87235 系列 USB 平均功率探头程控手册》。

6.4 返修方法

6.4.1 联系我们

若87235系列USB平均功率探头出现问题,首先观察错误信息并保存,分析可能的原因 并参考"6.2 故障诊断与排除"中提供的方法,予以先期排查解决问题。若未解决,请根据下 面的联系方式与我所服务咨询中心联系并提供收集的错误信息,我们将以最快的速度协助您 解决问题。

服务	·咨询:	0532-86889847 400-1684191		
技术支持:		0532-86880796		
传	真:	0532-86889056		
XX	址:	www.ceyear.com		
电子信箱:		techbb@ceyear.com		
邮	编:	266555		
地	址:	中国山东省青岛市黄岛区香江路98号		

6.4.2 包装与邮寄

当您的 87235 系列 USB 平均功率探头出现难以解决的问题时, 可通过电话或传真与我 们联系。如果经联系确认是 USB 平均功率探头需要返修时, 请您用原包装材料和包装箱包 装 USB 平均功率探头, 并按下面的步骤进行包装:

- 1) 写一份有关功率计故障现象的详细说明,与功率计一同放入包装箱。
- 2) 用原包装材料将功率计包装好,以减少可能的损坏。
- 3) 在外包装纸箱四角摆放好衬垫,将仪器放入外包装箱。
- 4) 用胶带密封好包装箱口,并用尼龙带加固包装箱。
- 5) 在箱体上标明"易碎!勿碰!小心轻放!"字样。
- 6) 请按精密仪器进行托运。
- 7) 保留所有运输单据的副本。

注意

包装 USB 平均功率探头需注意

使用其它材料包装 USB 平均功率探头,可能会损坏仪器。禁止使用聚苯乙烯小球作为 包装材料,它们一方面不能充分地保护仪器,另一方面会被产生的静电吸入仪器风扇中,对 仪器造成损坏。

提 示

仪器的包装和运输

运输或者搬运本仪器(例如,因发货期间的损坏)时,请严格遵守章节"3.2.1 开箱"中 描述的注意事项。

7	技术指标
---	------

7.1 声明 7 技术指标

本章介绍 87235 系列 USB 平均功率探头的技术指标和主要测试方法。

▶ 声明	
● 产品特征	
● 技术指标	
● 选件信息	61
▲ 补充信息	61

7.1 声明

除非特别声明,所有的指标测试条件是:温度范围是:23°C±5°C(开机半小时后)。仪器补充信息是帮助用户更加了解仪器性能,而不属于技术指标范围内的信息。重要词条说明如下:

技术指标 (spec): 除非另行说明, 已校准的仪器在0°C至50°C的工作温度范围内放置至 少两小时, 再经过30分钟预热之后, 可保证性能(其中包括测量的不确定度)。对于本 文中的数据, 如无另行说明均为技术指标。

典型值 (typ): 表示80%的仪器均可达到的典型性能,该数据并非保证数据,并且不包括测量过程中的不确定性因素,只在室温(约25°C)条件下有效。

额定值 (nom): 表示预期的平均性能、设计的性能特征或受限测试手段无法测试的性能,比如50 Ω连接器等。标注为额定值的产品性能不包含在产品质量保证范围内,在室温(大约25°C)条件下测得。

测量值 (meas): 表示为了和预期性能进行比较,在设计阶段所测得的性能特征,比如 幅度漂移随时间的变化。需要注意的是,该数据并非保证数据,并且是在室温(约 25℃) 条件下测得。

7.2 产品特征

显示	主控计算机	主控计算机显示器	
操作界面语言	中文/英文	中文/英文	
电源要求	+5V, 500m	+5V, 500mA	
操作温度范围	0°C ~ 50°C	0°C ~ 50°C	
存储温度范围	-40°C ~ +70	-40°C ~ +70°C	
工作湿度	 温度低于 10 温度范围为 温度范围为 温度范围为 	 温度低于 10℃时湿度不加控制; 温度范围为 10℃~30℃时,相对湿度为(5~95)%; 温度范围为 30℃~40℃时,相对湿度为(5~75)%; 温度范围为 40℃以上时,相对湿度为(5~45)%; 	
海拔高度	0 ~ 4600m	0 ~ 4600m	
重量	< 0.34g	< 0.34g	
外形尺寸	87235C	87235C 51.5mm×33.5 mm×176.0 mm	

表7.1 产品特征

7 技术指标

7.3 技术指标

(宽 mm×高 mm×深 mm)	87235D	51.5mm×33.5 mm×160.5 mm	
	87235F	51.5mm×33.5 mm×150.0 mm	
	87235FA	51.5mm×33.5 mm×157.0 mm	
	87235H	51.5mm×33.5 mm×154.5 mm	
	随机振动:频率 5 ~ 100Hz,功率谱密度 0.015g²/Hz;频率		
test	100 ~ 137Hz,;	斜率-6dB;频率 137 ~ 350Hz,功率谱密度	
17CAJ	0.0075g²/Hz; 频率 350~500Hz, 斜率-6dB; 频率 500Hz,		
	功率谱密度 0.00)39g²/Hz。	
可靠性要求	MTBF (θ₀) ≥5000h		
建议校准周期	12 个月		

7.3 技术指标

表7.2 技术指标

技术指标		
频率范围	87235C	10MHz ~ 8GHz
	87235D	10MHz ~ 18GHz
	87235F	10MHz ~ 33GHz
	87235FA	10MHz ~ 40GHz
	87235H	10MHz ~ 50GHz
功率范围	87235C	-60dBm ~ +23dBm
	87235D	-70dBm ~ +26dBm
	87235F	-65dBm ~ +26dBm
	87235FA	-65dBm ~ +23dBm
	87235H	-65dBm ~ +23dBm
损毁电平	87235C/D/F	+29dBm, 平均功率;
		+32dBm,峰值功率,持续时间 < 10us
	87235H/FA	+26Bm,平均功率;
		+29dBm,峰值功率,持续时间 < 10us
功率测量准确度1	87235C	±0.20dB (±4.6%)
	87235D	±0.20dB (±4.6%)
	87235F	±0.23dB (±5.3%)
	87235FA	±0.24dB (±5.6%)
	87235H	±0.25dB (±5.7%)
最大驻波比	87235C	1.20 (10MHz ~ 8GHz)
	87235D	1.20 (10MHz ~ 6GHz)
		1.26(6GHz ~ 18GHz)
	87235F	1.16 (10MHz ~ 6GHz)
		1.24 (6GHz ~ 16GHz)
		1.33 (16GHz ~ 26.5GHz)
		1.41(26.5GHz ~ 33GHz)

7 技术指标

7.3 技术指标

	87235FA	1.15(10MHz~6GHz)	
		1.25(6GHz ~ 16GHz)	
		1.35(16GHz ~ 26.5GHz)	
		1.45(26.5GHz ~ 40GHz)	
	87235H	1.13(10MHz~6GHz)	
		1.24(6GHz~16GHz)	
		1.29(16GHz ~ 26.5GHz)	
		1.32(26.5GHz ~ 40GHz)	
		1.48(40GHz ~ 50GHz)	
校准不确定度	87235C	3.7% (10MHz ~ 8GHz)	
	87235D	4.1% (10MHz ~ 18GHz)	
	87235F	4.1% (10MHz ~ 18GHz)	
		5.1%(18GHz~33GHz)	
	87235FA	4.1% (10MHz ~ 18GHz)	
		5.1%(18GHz~33GHz)	
		5.6%(33GHz~40GHz)	
	87235H	4.1% (10MHz ~ 18GHz)	
		5.1%(18GHz~33GHz)	
		5.6%(33GHz~50GHz)	
连接器	87235C	N-Type(m)	
	87235D	N-Type(m)	
	87235F	3.5mm(m)	
	87235FA	2.92mm(m)	
	87235H	2.4mm(m)	
程控接口	USB2.0 接口,兼容 USB-TMC		
最大测量速度	每秒 50000 个读数		
产品特征			
显示	主控计算机显示器		
操作界面语言	中文/英文		
电源要求	+5V, 500mA		
操作温度范围	0°C ~ 50°C		
存储温度范围	-40°C ~ +70°C		
	温度低于 10℃时湿度不加控制;		
工作湿度	温度范围为 10℃~ 30℃时,相对湿度为(5~95)%;		
	温度范围为 30℃~40℃时,相对湿度为(5~75)%;		
	温度范围为 40℃以上时,相对湿度为(5~45)%;		
海拔高度	0 ~ 4600m		
重量	< 0.4kg		
	87235C	51.5mm×33.5 mm×176.0 mm	
外形尺寸(宽×高×深)	87235D	51.5mm×33.5 mm×160.5 mm	
	87235F	51.5mm×33.5 mm×150.0 mm	

7 技术指标

7.4	选件信息
-----	------

	87235FA	51.5mm×33.5 mm×157.0 mm	
	87235H	51.5mm×33.5 mm×154.5 mm	
振动	随机振动:随机振动:频率 5 ~ 100Hz,功率谱密度 0.015g2/Hz; 频率 100 ~ 137Hz,斜率-6dB;频率 137 ~ 350Hz,功率谱密度 0.0075g2/Hz;频率 350 ~ 500Hz,斜率-6dB;频率 500Hz,功 率谱密度 0.0039g ² /Hz。		
可靠性要求	MTBF (θ₀) ≥5000h		
建议校准周期	12 个月		
主控计算机			
	Windows 10 32-bit	和 64-bit	
品作玄纮	Windows 7 32-bit 和 64-bit		
珠1F 尔 红	Windows XP		
	Linux		
	处理器: 1GHz 或更	高(推荐 2GHz 以上)	
西州	内存: 2GB 或更高(推荐 4GB 以上)		
¥21T	硬盘空间: 1.0GB 或	更高	
	显示: 1280×1024 国	戊更高	

1、87235C/H 在功率范围-40dBm ~ +20dBm、待测设备 SWR < 1.20 时有效,平均次 数设置为 32 时,功率测量精度满足要求;87235D/F 在功率范围-45dBm ~ +20dBm、 待测设备 SWR < 1.20 时有效,平均次数设置为 32,功率测量精度满足要求。

7.4 选件信息

表 7.3 选件信息

选件	描述
87235-H01	功率电缆, 4.5m
87235-H03C	商业校准证书,87235C
87235-H03D	商业校准证书,87235D
87235-H03F	商业校准证书,87235F
87235-H03FA	商业校准证书,87235FA
87235-H03H	商业校准证书,87235H
87235-H04	英文套件
87235-H05A	硬式旅行箱(可携带一套)
87235-H05B	硬式旅行箱(可携带两套)
87235C-EWT1	延长保修服务
87235D-EWT1	延长保修服务
87235F-EWT1	延长保修服务
87235FA-EWT1	延长保修服务
87235H-EWT1	延长保修服务