PXI-2545 Specifications

2025-03-14

n

Contents

PXI-2545 Specifications

PXI-2545 Specifications

This document lists specifications for the PXI-2545 . All specifications are subject to change without notice.

About These Specifications

Specifications characterize the warranted performance of the instrument under the stated operating conditions. Data in this document are *Specifications* unless otherwise noted.

Typical Specifications are specifications met by the majority of the instrument under the stated operating conditions and are tested at 23 °C ambient temperature. Typical specifications are not warranted.

All voltages are specified in DC, AC_{pk}, or a combination unless otherwise specified.

Caution The protection provided by the PXI-2545 can be impaired if it is used in a manner not described in this document.

Input Characteristics

Maximum switching voltage	30 V	
Maximum switching current (per channel)	0.5 A	
Maximum carry current (per channel)	0.5 A	
Maximum RF power		

Channel to common	10 W
Termination (≤25 °C ambient)	1.5 W
Minimum switch load	0 dBm

Caution The switching power is limited by the maximum switching current and the maximum voltage. Channel-to-common switching power must not exceed 10 W.

Caution Terminations cannot withstand the full rated power of the PXI-2545

Note NI recommends against switching active RF signals. As a relay actuates, the channel is momentarily unterminated. Some RF sources can be damaged by reflections if their outputs are not properly terminated. Refer to your RF source documentation for more information.

Note Switching active RF signals below 0 dBm may degrade signal integrity and decrease relay life. For more information about switching active RF signals, visit <u>ni.com/info</u> and enter Info Code RFSwitching.

DC path resistance		
Initial	<0.25 Ω, typical	
End-of-life	≥1.0 Ω, typical	

Path resistance is a combination of relay contact resistance and trace resistance.

Contact resistance typically remains low for the life of a relay. At the end of relay life, the contact resistance rises rapidly above 1.0Ω .

Related reference:

• Termination Derating

RF Performance Characteristics

Characteristic impedance (Z ₀)			50 Ω, nominal	
Insertion loss				
≤1 GHz	<1.0	<1.0 dB (<0.85 dB, typical)		
≤2.7 GHz	<2.0 dB (<1.7 dB, typical)			
Voltage standing wave rat	io (VS	WR), c	hannel to common	
≤1 GHz <1.3		(<1.25, typical)		
≤2.7 GHz <1.6		.6 (<1.45, typical)		
Isolation				
≤1 GHz		>60 dB, typical		
≤2.7 GHz		>45 dB, typical		
Channel-to-channel skew			<15 ps, typical	

Propagation delay	1.3 ns, typical
Rise time (10% to 90%)	93 ps, typical

Refer to the following figures for typical insertion loss, typical channel to common VSWR, typical termination VSWR, and typical isolation.

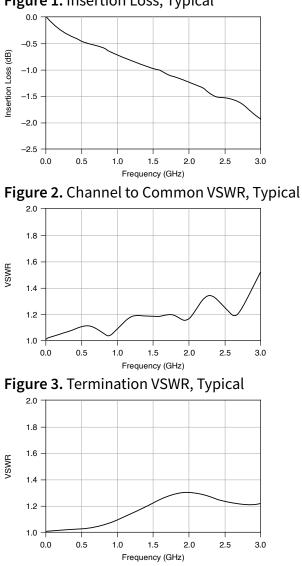
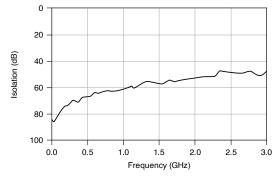
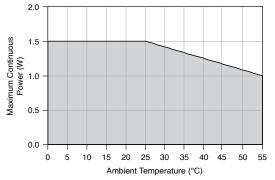



Figure 1. Insertion Loss, Typical


Figure 4. Isolation, Typical

Termination Derating

Caution When operating the PXI-2545 at ambient temperatures >25 °C, the derating in the following figure limits the maximum constant power each termination can dissipate.

Figure 5. Termination Derating

Caution Failure to operate below listed power limits can result in permanent damage to the device.

Dynamic Characteristics

Maximum relay operate time		10.4 ms
Expected relay life		·
Mechanical	1×1	0 ⁶ cycles

Electrical (30 V, 10 mA, DC resistive)	3 × 10 ⁵ cycles
--	----------------------------

Trigger

Input trigger			
Sources		PXI trigger lines <07>	
Minimum pulse width ^[1]		150 ns	
Output trigger			
Destinations	PXI trigger lines <07>		
Pulse width	Software-selectable: 1 μs to 62 μs		

Physical Characteristics

Relay type	Electromechanical, latching
I/O connectors	5 SMA jacks, gold plated
PXI power	3.7 W at 5 V
requirement	0.3 W at 3.3 V
Dimensions (L × W ×	3U, one slot, PXI/cPCI module
H)	21.6 cm × 2.0 cm × 13.0 cm(8.5 in. × 0.8 in. × 5.1 in.)

Weight	255 g (9 oz)

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)	
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)	

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)	
Random vibr	m vibration	
Operating	5 Hz to 500 Hz, 0.31 g _{rms} (Tested in accordance with IEC 60068-2-64.)	
Nonoperatin	³ 5 Hz to 500 Hz, 2.46 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)	

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions

- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product

life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国RoHS)

• ◎ ◎ 中国RoHS—NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs_china.)