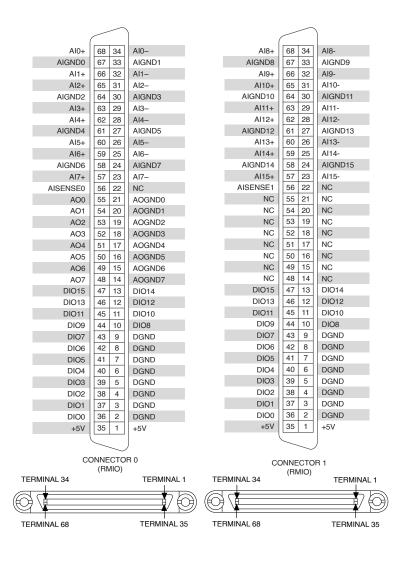
PXIe-7861产品 规范

目录


XIe-7861产品规范	3
VIC 1001/ HH/M/D	_

PXIe-7861产品规范

条件

除非另外声明,否则下列规范的适用温度均为25°C。

引脚分布

表 1. PXIe-7861信号说明

信号	说明
Al+	正模拟输入信号连接
AI-	负模拟输入信号连接
AISENSE	NRSE测量的参考连接
AIGND	模拟输入信号的参考地
AO	模拟输出信号连接
AOGND	模拟输出信号的参考地
DIO	数字输入/输出信号连接
DGND	数字信号的参考地
GND	接地连接
电源(+5 V _{out})	外部设备5 V电源输出连接
NC	无连接

PXIe-7861具有过压和过流保护功能。

注: SCB-68A附件盖子上的引脚分布标签与NI PXIe-7861不兼容。关于兼容的引脚分布标签的详细信息,见<u>ni.com/manuals</u>上的**NI 78xxR Pinout Labels for the SCB-68A**。

模拟输入

通道数	16
输入模式(可软件选择;选择适用于所有通道)	DIFF、NRSE、RSE

模数转换器类型			逐次逼近寄存器(SAR)	
分辨率	分辨率		16位	
转换时间			1 μs	
最大采样率(每通道)			1 MS/s	
输入阻抗				
上电 1.25 GΩ		1.25 GΩ 2 pF		
断电/过载 4 kΩ,最小值		4 kΩ,最小值		
输入信号范围(可软件选择)		±1 V, ±2 V, ±5 V, ±10 V		
输入偏置电流	输入偏置电流		±5 nA	
输入失调电流		±5 nA		
输入耦合		DC		
过压保护				
上电 ±42 V,最大值				

掉电	±35 V,最大值

表 2. 过温时AI工作电压范围

91 000		测量电压,AI+至A	最大工作电压	
量程(V)	最小值(V) ¹	值(V) ¹ 常规值(V) 最大值(V)		(信号电压+共模电压)
±10	±10.37	±10.5	±10.63	对地±12 V
±5	±5.18	± 5.25	±5.32	对地±10 V
±2	±2.07	±2.1	±2.13	对地±8.5 V
±1	±1.03	±1.05	±1.06	对地±8 V

AI绝对精度

全量程绝对精度值内部校准后立即生效,且假设自上次外部校准,设备的工作温度变化小于10°C。自设备外部校准起,表中给出精度的有效期为一年。

假设根据下列值来计算模拟输入通道的全量程绝对精度:

- · 上次外部校准至今的温度变化值=10℃
- 上次内部校准至今的温度变化值 = 1℃
- 采样数量 = 10,000
- · 包含因子=3σ

表 3. AI绝对精度(校准后)

产品规范	量程			
	±10 V	±5 V	±2 V	±1 V
残余增益误差(读数的ppm)	104.4	105.9	110.6	118.4
增益温度系数(ppm/°C)	20	20	20	20
参考温度系数(ppm/°C)	4	4	4	4

1. 最小测量电压范围指NI PXIe-7861可精确测量的最大电压。

产品规范	量程			
) ロロ が 次と	±10 V	±5 V	±2 V	±1 V
残余偏移误差(量程的ppm)	16.4	16.4	16.4	16.4
偏移温度系数(量程的ppm/°C)	4.18	4.17	4.41	4.63
INL误差(量程的ppm)	42.52	46.52	46.52	50.52
随机噪声,σ (μV _{rms})	263	156	90	74
全量程绝对精度(μV)	2,283	1,170	479	252

表 4. AI绝对精度(未校准)

产品规范	量程			
	±10 V	±5 V	±2 V	±1 V
残余增益误差(读数的ppm)	2,921	3,021	3,021	3,021
增益温度系数(ppm/°C)	20	20	20	20
参考温度系数(ppm/°C)	4	4	4	4
残余偏移误差(量程的ppm)	661	671	700	631
偏移温度系数(量程的ppm/°C)	4.18	4.17	4.41	4.63
INL误差(量程的ppm)	42.52	46.52	46.52	50.52
随机噪声,σ (μV _{rms})	263	156	90	74
全量程绝对精度(μV)	36,895	19,018	7,667	3,769

直流传输特性

INL	请参考AI精度表
DNL	±0.4 LSB常规值;±0.9 LSB最大值

无丢失编码	保证16位
CMRR, DC至60 Hz	-100 dB

动态特性

带宽	
小信号	1 MHz
大信号	500 kHz

表 5. 稳定时间

量程(V)	步长(V)	精度		
		±16 LSB	±4 LSB	±2 LSB
	±20.0	1.50 μs	4.00 μs	7.00 μs
±10	±2.0	0.50 μs	0.50 μs	1.00 μs
	±0.2	0.50 μs	0.50 μs	0.50 μs
	±10	1.50 μs	3.50 μs	7.50 μs
±5	±1	0.50 μs	0.50 μs	1.00 μs
	±0.1	0.50 μs	0.50 μs	0.50 μs
	±4	1.00 μs	3.50 μs	8.00 μs
±2	±0.4	0.50 μs	0.50 μs	1.00 μs
	±0.04	0.50 μs	0.50 μs	0.50 μs
±1	±2	1.00 μs	3.50 μs	12.00 μs
	±0.2	0.50 μs	0.50 μs	2.00 μs
	±0.02	0.50 μs	0.50 μs	0.50 μs

串扰	-80 dB(DC 至 100 kHz,50 Ω时)
----	----------------------------

模拟输出

输出类型	单端,电压输出
通道数	8
分辨率	16位
更新时间	1 μs
最大更新速率	1 MS/s
DAC类型	增强型R-2R
量程	±10 V
输出耦合	DC
输出阻抗	0.5 Ω
电流驱动	±2.5 mA

保护		短路接地
过压保护		
上电	±15 V,最大值	
掉电	±10 V,最大值	
上电状态		用户可配置
上电毛刺		1V,持续4 μs
断电毛刺		1 V,持续200 μs

表 6. 过温时AO工作电压范围

量程(V)		测量电压,AO+对AO GN	D
	最 小值 (V) ²	常规值(V)	最大值(V)
±10	±10.1	±10.16	±10.22

AO绝对精度

全量程绝对精度值内部校准后立即生效,且假设自上次外部校准,设备的工作温度变化小于10°C。自设备外部校准起,表中给出精度的有效期为一年。

假设根据下列值来计算模拟输出通道的全量程绝对精度:

- · 上次外部校准至今的温度变化值 = 10 ℃
- 2. 最小测量电压范围指NI PXIe-7861可精确测量的最大电压。

· 上次内部校准至今的温度变化值=1℃

表 7. AO绝对精度(校准后)

产品规范	±10 V量程
残余增益误差(读数的ppm)	87.3
增益温度系数(ppm/°C)	12.6
参考温度系数(ppm/°C)	4
残余偏移误差(量程的ppm)	41.1
偏移温度系数(量程的ppm/°C)	7.8
INL误差(量程的ppm)	61
全量程绝对精度(μV)	2,498

表 8. AO绝对精度(未校准)

产品规范	±10 V量程
残余增益误差(读数的ppm)	2,968.6
增益温度系数(ppm/°C)	12.6
参考温度系数(ppm/°C)	4
残余偏移误差(量程的ppm)	1,004.1
偏移温度系数(量程的ppm/°C)	7.8
INL误差(量程的ppm)	61
全量程绝对精度(μV)	40,941

计算绝对精度

绝对精度 = 输出值 × (增益误差) + 量程 × (偏置误差)

增益误差 = 残余增益误差 + 增益温度系数 × (上次内部校准至今的温度变化值) + 参考温度系数 × (上次外部校准至今的温度变化值) 偏置误差 = 残余增益误差 + AO偏置温度系数 × (上次内部校准至今的温度变化值) + INL误差

关于计算10 V读数的绝对精度的范例,见下列公式。

假设根据下列值来计算模拟输出通道的全量程绝对精度:

· 上次外部校准至今的温度变化值 = 10 ℃

· 上次内部校准至今的温度变化值=1℃

增益误差 = 87.3 ppm + 12.6 ppm × 1 + 4 ppm × 10

增益误差 = 139.9ppm

偏置误差 = 41.1 ppm + 7.8 ppm × 1 + 61 ppm

偏置误差 = 109.9ppm

绝对精度 = 10 V× (增益误差) + 10 V× (偏置误差)

绝对精度 = 2,498μV

直流传输特性

INL	请参考AO精度表
DNL	±0.5 LSB 常规值;±1 LSB 最大值
单调性	16位,保证值

动态特性

表 9. 稳定时间

华上小小	精度		
步长(V)	±16 LSB	±4 LSB	±2 LSB
±20.0	5.3 μs	6.5 μs	7.8 µs
±2.0	3.2 μs	3.9 μs	4.4 μs
±0.2	1.8 μs	2.8 μs	3.8 μs

边沿斜率	10 V/μs
噪声	250 μV RMS, DC至1 MHz
幅度中点转换时的毛刺能量	±10 mV,持续3 μs

5V输出

输出电压	4.75 V∼5.1 V
输出电流	0.5 A,最大值
过压保护	±30 V
过流保护	650 mA

数字I/O

表 10. 通道频率

连接器	通道数	最大频率
连接器0	16	10 MHz
连接器1	16	10 MHz

兼容性	LVTTL, LVCMOS
-----	---------------

逻辑系列	固定
电压水平	3.3 V

表 11. 数字输入逻辑电平

逻辑系列	输入低电压(VIL)最大值	输入高电压(VIH)最小值
3.3 V	0.80 V	2.00 V

最小输入	-0.3 V
最大输入	3.6 V
输入泄漏电流	±15 μA,最大值
输入阻抗	常规50kΩ,下拉

表 12. 数字输出逻辑电平

逻辑系列	电流	输出低电压(V _{OL})最 大值	输出高电压(V _{OH})最小值
3.3 V	100 μΑ	0.20 V	3.00 V
3.3 V	4 mA	0.40 V	2.40 V

每通道最大直流输出电流	
拉电流	4.0 mA

灌电流	4.0 mA	
输出阻抗	50 Ω	
上电状态 ³	可按线编程控制	
保护 ⁴	±15 V,单线	
数字I/O通道的方向控制	每通道	
最小I/O脉冲宽度	50 ns	
最短采样周期	5 ns	

可重配置FPGA

FPGA型号	Kintex-7 160T
Flip-flop触发器数	202,800
LUT数量	101,400

- 3. 默认为三态。
- 4. NI建议最大限度地减少数字I/O长期暴露在过压/欠压下的情况。长期处于违反最大/最小数字输入 电压额定值的直流电压下可能会缩短设备的使用寿命。如果处于异常情况下的累积时间超过1 年,则认为暴露于过压/欠压下的时间过长。

嵌入式块RAM	11,700 kb
DSP48片数	600
时基	40 MHz, 80 MHz, 120 MHz, 160 MHz, 200 MHz
默认时基	40 MHz
时基参考源	板载时钟,锁相至PXI Express100 MHz (PXIe_CLK100)
板载时钟时基精度	±100 ppm, 250 ps峰峰抖动
数据传输	DMA、中断、编程控制I/O

板载DRAM

存储器大小	1个组,512 MB
最大理论数据速率	800 MB/s流式传输

同步资源

输入/输出源 PXI_Trig<07>

输入源	PXI_Star, PXIe_DStarA, PXIe_DStarB, PXI_Clk10, PXIe_Clk100
输出源	PXIe_DStarC

总线接口

构成	x4 PXI Express,符合版本1.0规范
插槽兼容性	x4、x8和x16 PXI Express或PXI Express混合插槽
数据传输	DMA、中断、编程控制I/O
DMA通道数	16

电源要求

电源要求取决于应用中使用的数字输出负载和LabVIEW FPGA VI的配置。

+3.3 V	3 A
+12 V	2 A

物理特性

请使用干净的干毛巾清洁设备。

提示 关于设备和连接器的二维图及三维模型,请访问<u>ni.com/</u> <u>dimensions</u>,并通过搜索相应型号查看。

尺寸	21.4 cm × 13.0 cm × 2.0 cm(8.43 in. × 5.1 in. × 0.8 in.)
权重	171.1 g (6.04 oz)
I/O连接器	2个68针VHDCI

安全电压

仅连接规定范围之内的电压。

通道对地	±12 V, Measurement Category I
通道间	±24 V, Measurement Category I

注意 在Measurement Category II、III和IV中,请勿使用NI PXIe-7861连接信号或进行测量。

注意 Ne connectez pas le NI PXIe-7861 à des signaux et ne l'utilisez pas pour effectuer des mesures dans les catégories de mesure II, III ou IV.

Measurement Category I适用于在不直接连接配电系统(*MAINS*电压)的电路上进行的测量。MAINS是对设备供电的电源系统,可能对人体造成伤害。该类测量主要用于受二级电路保护的电压测量。这类电压测量包括:信号电平、特种设备、设备

的特定低能量部件、稳压低压电源供能的电路和电子设备。

Measurement Category CAT I和CAT O等同。该类测试测量电路用于其 他电路,不能直接连接使用MAINS建筑物电源的Measurement Category CAT II、CAT III或CAT IV电路。

安全合规性标准

该产品设计符合以下测量、控制和实验室用途的电气设备安全标准:

- IEC 61010-1, EN 61010-1
- UL 61010-1、 CSA C22.2 No. 61010-1

关于安全认证,请参阅产品标签或<u>产品认证和声明</u>章节。

电磁兼容性

产品符合以下测量、控制和实验室用途电气设备的EMC标准:

- EN 61326-1 (IEC 61326-1): Class A放射标准;基本抗扰度
- EN 55011 (CISPR 11): Group 1, Class A放射标准
- AS/NZS CISPR 11: Group 1, Class A放射标准
- FCC 47 CFR Part 15B: Class A放射标准
- ICES-001: Class A放射标准

注: 在美国(依据FCC 47 CFR),Class A设备适用于商业、轻工业和重 工业环境。在欧洲、加拿大、澳大利亚和新西兰(依据CISPR 11),Class A设备仅适用于重工业环境。

注: Group 1设备(依据CISPR 11)是指不会出于处理材料或检查/分析目 的,而有意释放射频能量的工业、科学或医疗设备。

注: 关于EMC声明和认证等详细信息,见<u>在线产品认证</u>章节。

CE兼容(**€**

产品已达到现行欧盟产品规范的下列基本要求:

2014/35/EU; 低电压规范(安全性)2014/30/EU; 电磁兼容性规范(EMC)

产品认证和声明

关于合规信息,见产品的合规声明(DoC)。如需获取NI产品认证及合规声明(DoC),请访问<u>ni.com/product-certifications</u>,通过模块编号搜索,并查看相应链接。

冲击和振动

运行环境 冲击	30 g峰值,11 ms半正弦脉冲(依据IEC60068-2-27标准进行测试。满足 MIL-PRF-28800F Class 2限制。)	
随机振动		
设备工作	5 Hz~500 Hz, 0.3 g RMS(依据IEC 60068-2-64标准进行测试。)	
设备未工作	5 Hz~500 Hz, 2.4 g RMS(依据IEC 60068-2-64标准进行测试。满足MIL-PRF-28800F Class 3限制。)	

环境

关于具体要求,见所用机箱的文档。

运行环境温度 (IEC 60068-2-1, IEC 60068-2-2)	0 °C∼55 °C
存储温度 (IEC 60068-2-1, IEC 60068-2-2)	-40 °C∼71 °C
运行环境湿度(IEC 60068-2-78)	10% RH~90% RH,无凝结
存储湿度(IEC 60068-2-78)	5% RH~95% RH,无凝结
污染等级	2
最高海拔	2,000米

仅限室内使用。

环境保护

NI始终致力于设计和制造有利于环境保护的产品。NI认为减少产品中的有害物质不 仅有益于环境, 也有益于客户。

如需了解更多环境保护信息,请访问ni.com/environment,参阅*以工程守护健康地* 球页面。该页包含NI遵守的环境准则和规范,以及本文档未涉及的其他环境信息。

欧盟和英国客户

• **闰电子电器设备废弃物(WEEE)**—所有超过生命周期的NI产品都必须依照当地法 律法规进行处理。关于如何在当地回收NI产品,请访问ni.com/environment/ weee_o

电子信息产品污染控制管理办法(中国RoHS)

• ●●● 中国RoHS—NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

校准

推荐预热时间		15分钟
校准间隔		1年
板载校准参考		
直流电平 ⁵	5.000 V (±2 mV)	
温度系数	±4 ppm/°C,最大值	
长期稳定性	±25 ppm/1,000 h	

注: 如需为NI PXIe-7861生成校准证书,请参阅<u>ni.com/calibration</u>上的校准认证

NI服务

访问<u>ni.com/support</u>查找支持资源,包括文档、下载、故障排查和应用程序开发自助资料(例如教程和范例)等。

5. 闪存中存储的实际值

访问<u>ni.com/services</u>了解NI服务产品,例如校准选项、维修和更换。

请访问<u>ni.com/register</u>注册您的NI产品。产品注册能使您更便捷地获得技术支持, 并确保您收到NI的重要更新。

NI总部地址: 11500 N Mopac Expwy, Austin, TX, 78759-3504, USA。