# PXIe-4147 Specifications



# **Contents**

| PXIe-4147 Specifications | 3 |
|--------------------------|---|
|                          |   |

# PXIe-4147 Specifications

These specifications apply to the PXIe-4147.

## **Revision History**

| Version    | Date changed | Description                            |
|------------|--------------|----------------------------------------|
| 378264D-01 | August 2024  | Added information for Merged Channels. |

## **Looking For Something Else?**

For information not found in the specifications for your product, such as operating instructions, browse **Related Information**.

#### **Related information:**

- PXIe-4147 User Manual
- NI-DCPower User Manual

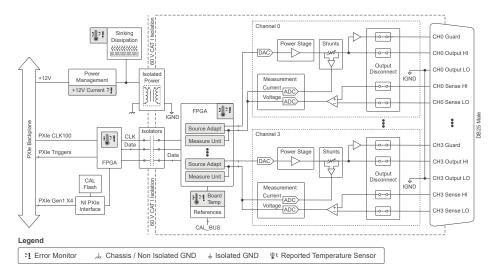
## **Definitions**

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

**Characteristics** describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- *Measured* specifications describe the measured performance of a representative model.

Specifications are *Warranted* unless otherwise noted.


## **Conditions**

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature <sup>1</sup> of 23 °C ± 5 °C
- Relative humidity between 10% and 70%, noncondensing. See <u>Programming and Measurement Accuracy/Resolution</u> for additional performance derating when operating above 70% relative humidity.
- Chassis with slot cooling capacity ≥38 W<sup>2</sup>
  - For chassis with slot cooling capacity = 38 W, fan speed set to HIGH
- Calibration interval of 1 year
- · 30 minutes warm-up time
- · Self-calibration performed within the last 24 hours
- niDCPower Aperture Time property or NIDCPOWER\_ATTR\_APERTURE\_TIME attribute set to 2 power-line cycles (PLC)

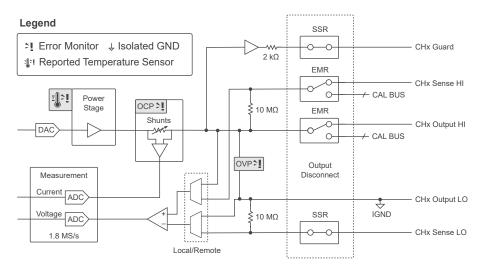

## **Block Diagrams**

Figure 1. PXIe-4147 Block Diagram



- 1. The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).
- 2. For increased capability, NI recommends installing the PXIe-4147 in a chassis with slot cooling capacity ≥58 W.

Figure 2. Channel-Level Block Diagram



# **Instrument Capabilities**

| Channels          | 0 through 3 <sup>3</sup>                      |
|-------------------|-----------------------------------------------|
| DC voltage ranges | 1 V, 8 V                                      |
| DC current ranges | 1 μΑ, 10 μΑ, 100 μΑ, 1 mA, 10 mA, 100 mA, 3 A |

The following figure illustrates the voltage and the current source and sink ranges of the PXIe-4147.

3. Channels isolated from earth ground, but share a common LO for all channels (bank isolation).

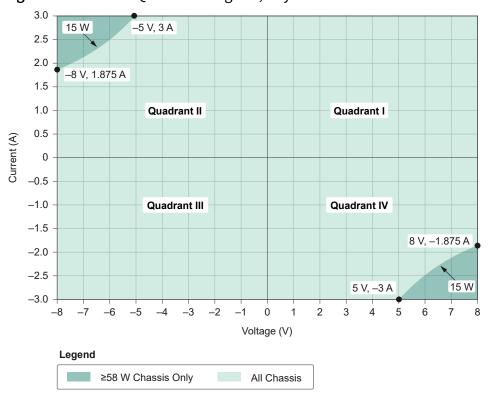



Figure 1. PXIe-4147 Quadrant Diagram, Any Channel

| Available DC output power <sup>4</sup> |                           |                                 |  |  |
|----------------------------------------|---------------------------|---------------------------------|--|--|
| Sourcing <sup>5</sup>                  |                           |                                 |  |  |
| All chassis                            | 24 W per channel and 40 W | total                           |  |  |
| Sinking                                |                           |                                 |  |  |
| ≥58 W Slot Cooling Capac               | ity Chassis <sup>6</sup>  | 24 W per channel and 40 W total |  |  |
| <58 W Slot Cooling Capacity Chassis    |                           | 15 W per channel and 15 W total |  |  |

- 4. Power limit defined by voltage measured between HI and LO terminals.
- 5. Sourcing power may be limited by total power available from the chassis power supply. Refer to the <u>Performing a Power Budget on a PXI/PXIe System</u> article for more information.
- 6. When sinking more than 15 W into the PXIe-4147, transients may not exceed 200 mW/μs.

## **Voltage**

**Table 4.** Voltage Programming and Measurement Accuracy/Resolution

|           | Noise (0.1           |                           | Accuracy ± (% of Voltage + Offset) <sup>7</sup>                      |                                 | Tempco <sup>8</sup> ± (% of Voltage +                            |  |
|-----------|----------------------|---------------------------|----------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|--|
| Range     | Resolution<br>(Noise | to 10 Hz,                 | T <sub>ambient</sub> 23 °C±5 °C, T <sub>cal</sub> <sup>9</sup> ±5 °C |                                 | Offset)/°C                                                       |  |
| ·······g- | l imited)            | peak-to-peak,<br>typical) | Multiple<br>Channels <sup>10</sup>                                   | Single<br>Channel <sup>11</sup> | T <sub>ambient</sub> 0 °C<br>to 55 °C,<br>T <sub>cal</sub> ±5 °C |  |
| 1 V       | 100 nV               | 2 μV                      | 0.025% + 110 μV                                                      | 0.02% + 70 μV                   | 0.00020/ + 1 + 1/                                                |  |
| 8 V       | 1 μV                 | 12 μV                     | 0.02% + 600 μV                                                       | 0.015% + 400 μV                 | 0.0002% + 1 μV                                                   |  |

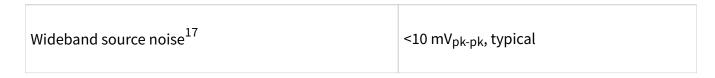
- 7. Refer to the Remote Sense and Load Regulation sections for additional accuracy derating and conditions.
- 8. Temperature coefficient applies beyond 23 °C±5 °C ambient within ±5 °C of T<sub>cal</sub>.
- 9. T<sub>cal</sub> is the internal device temperature recorded by the PXIe-4147 at the completion of the last selfcalibration.
- 10. Multiple-channel specifications apply whenever two or more channels are connected and sourcing/ sinking current. Multiple-channel specifications account for interactions between the channels when operated at high current, including board heating.
- 11. Single-channel specifications assume only one channel is connected and sourcing/sinking current which results in improved accuracy due to the reduction of effects between the channels, including board heating. When transitioning from a multiple-channel configuration to a single-channel configuration, a ten-minute cool down period is required to meet Single Channel accuracy specifications.

## Current

Table 2. Current Programming and Measurement Accuracy/Resolution

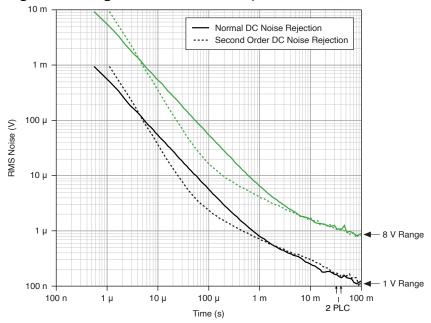
|        | Resolution         | Solution Noise (0.1 Hz to 10 Hz, Accuracy $\pm$ (% of Current + Offset) <sup>12</sup> |                                    | Tempco <sup>13</sup> ±<br>(% of Current<br>+ Offset)/°C |                                     |  |
|--------|--------------------|---------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------|-------------------------------------|--|
| Range  | (Noise<br>Limited) | peak-to-peak,                                                                         | T <sub>ambient</sub> 23 °C±5       | °C, T <sub>cal</sub> <sup>14</sup> ±5 °C                | T <sub>ambient</sub> 0 °C           |  |
|        | Limited)           | typical)                                                                              | Multiple<br>Channels <sup>15</sup> | Single<br>Channel <sup>16</sup>                         | to 55 °C,<br>T <sub>cal</sub> ±5 °C |  |
| 1 μΑ   | 100 fA             | 8 pA                                                                                  | 0.045% + 250 pA                    | 0.035% + 150 pA                                         |                                     |  |
| 10 μΑ  | 1 pA               | 60 pA                                                                                 | 0.05% + 1.6 nA                     | 0.035% + 1 nA                                           |                                     |  |
| 100 μΑ | 10 pA              | 400 pA                                                                                | 0.045% + 14 nA                     | 0.035% + 8 nA                                           |                                     |  |
| 1 mA   | 100 pA             | 4 nA                                                                                  | 0.04% + 120 nA                     | 0.03% + 70 nA                                           | 0.0003% + 2 pA                      |  |
| 10 mA  | 1 nA               | 40 nA                                                                                 | 0.04% + 1.2 μΑ                     | 0.03% + 700 nA                                          |                                     |  |
| 100 mA | 10 nA              | 400 nA                                                                                | 0.045% + 12 μΑ                     | 0.035% + 7 μΑ                                           |                                     |  |
| 3 A    | 1 μΑ               | 40 μΑ                                                                                 | 0.07% + 800 μΑ                     | 0.07% + 400 μΑ                                          |                                     |  |




**Note** For more information about the impact to specifications when using NI-DCPower Merged Channels, refer to *Effect of Merging Channels on Performance Specifications* in the PXIe-4147 User Manual.

#### **Related information:**

- 12. Relative humidity between 10% and 70%, noncondensing. When operating above 70% relative humidity, add 30 pA to current accuracy specifications.
- 13. Temperature coefficient applies beyond 23 °C±5 °C ambient within ±5 °C of T<sub>cal</sub>.
- 14. T<sub>cal</sub> is the internal device temperature recorded by the PXIe-4147 at the completion of the last self-calibration.
- 15. Multiple-channel specifications apply whenever two or more channels are connected and sourcing/sinking current. Multiple-channel specifications account for interactions between the channels when operated at high current, including board heating.
- 16. Single-channel specifications assume only one channel is connected and sourcing/sinking current which results in improved accuracy due to the reduction of effects between the channels, including board heating. When transitioning from a multiple-channel configuration to a single-channel configuration, a ten-minute cool down period is required to meet Single Channel accuracy specifications.


• Effect of Merging Channels on Performance Specifications

## **Noise**



The following figures illustrate measurement noise as a function of measurement aperture for the PXIe-4147.

Figure 1. Voltage RMS Noise Versus Aperture Time, Nominal





**Note** When the aperture time is set to two power-line cycles (PLCs), measurement noise differs slightly depending on whether NI-DCPower Power Line Frequency is set to 50 Hertz or 60 Hertz.



Note To configure DC noise rejection, set NI-DCPower DC Noise Rejection to Normal or Second-Order.

17. 10 Hz to 20 MHz bandwidth. PXIe-4147 configured for normal transient response.

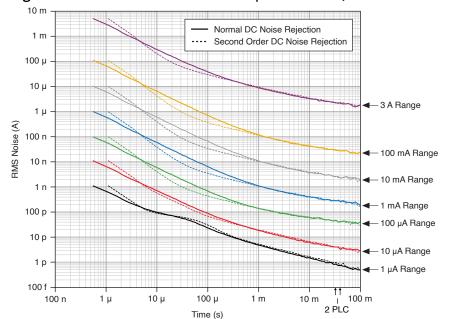



Figure 1. Current RMS Noise Versus Aperture Time, Nominal



**Note** When the aperture time is set to two power-line cycles (PLCs), measurement noise differs slightly depending on whether NI-DCPower Power Line Frequency is set to 50 Hertz or 60 Hertz.



**Note** To configure DC noise rejection, set NI-DCPower DC Noise Rejection to Normal or Second-Order.



**Note** For more information about the impact to specifications when using NI-DCPower Merged Channels, refer to *Effect of Merging Channels on Performance Specifications* in the PXIe-4147 User Manual.

#### **Related information:**

Effect of Merging Channels on Performance Specifications

# **Transient Response and Settling Time**

| Settling time <sup>18</sup>                     |                 |
|-------------------------------------------------|-----------------|
| Voltage mode, ≤4 V step, unloaded <sup>19</sup> | <50 μs, typical |

| Current mode, full-scale step, 3 A to 100 μA ranges <sup>20[20]</sup> | <50 μs, typical  |                  |  |  |
|-----------------------------------------------------------------------|------------------|------------------|--|--|
| Current mode, full-scale step, 10 μA range <sup>[20]</sup>            | <100 μs, typical |                  |  |  |
| Current mode, full-scale step, 1 μA range <sup>[20]</sup>             |                  | <200 μs, typical |  |  |
| Transient response <sup>21</sup>                                      |                  |                  |  |  |
| 3 A to 100 μA ranges                                                  |                  |                  |  |  |
| 10 μA range                                                           |                  |                  |  |  |
| 1 μA range <200 μs, typical                                           |                  |                  |  |  |

### **Remote Sense**

| Voltage accuracy                 | Add (10 ppm of voltage range + 25 $\mu V)$ per volt of LO lead drop, plus 10 $\mu V$ per volt of HI lead drop to voltage accuracy specification |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum sense<br>lead resistance | 100 Ω                                                                                                                                           |
| Maximum lead                     | 1 V, maximum 8 V between HI and LO terminals                                                                                                    |

- 18. Measured as the time to settle to within 0.1% of step amplitude, PXIe-4147 configured for fast transient response.
- 19. Current limit set to ≥30 µA and ≥20% of the selected current limit range.
- 20. Voltage limit set to ≥2 V, resistive load set to 1 V/selected current range.
- 21. Time to recover within 10 mV after a load current change from 10% to 90% of range, PXIe-4147 configured for fast transient response.

|  | drop per lead |  |  |  |  |  |
|--|---------------|--|--|--|--|--|
|--|---------------|--|--|--|--|--|

# **Load Regulation**

| Voltage, local sense <sup>22</sup> | 100 μV/mA, nominal; 200 μV/mA, maximum     |
|------------------------------------|--------------------------------------------|
| Voltage, remote sense              | Error included in accuracy specifications. |
| Current                            | Error included in accuracy specifications. |



**Note** For more information about the impact to specifications when using NI-DCPower Merged Channels, refer to *Effect of Merging Channels on Performance Specifications* in the PXIe-4147 User Manual.

#### **Related information:**

• Effect of Merging Channels on Performance Specifications

## **Isolation**

| Isolation voltage, any pin to earth ground <sup>23</sup> | 60 V DC, CAT I      |
|----------------------------------------------------------|---------------------|
| Withstand voltage                                        | 800 V <sub>pk</sub> |

- 22. At the output terminals of attached TB-414X Screw Terminal Connector Kit.
- 23. Channels isolated from earth ground, but share a common LO for all channels (bank isolation).

# **Protection**

| Absolute maximum voltage to Output LO, all pins |                                                   |  |  |  |
|-------------------------------------------------|---------------------------------------------------|--|--|--|
| Output HI                                       | ±10 V                                             |  |  |  |
| All other pins                                  | ±60 V                                             |  |  |  |
| Output channel protection                       |                                                   |  |  |  |
| Overcurrent or overvoltage                      | Automatic shutdown, output disconnect relay opens |  |  |  |
| Overtemperature                                 | Automatic shutdown, output disconnect relay opens |  |  |  |

# **Guard Output Characteristics**

| Cable guard      |               |  |
|------------------|---------------|--|
| Output impedance | 2 kΩ, nominal |  |
| Offset voltage   | 1 mV, typical |  |

## **Output Resistance Programming Accuracy**

Table 3. Output Resistance Programming Accuracy

| Current Level/<br>Limit Range | Voltage Mode                     |                                                                          | Current Mode                                     |                                                     |
|-------------------------------|----------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
|                               | Programmable<br>Resistance Range | Accuracy, ±(% of<br>Resistance<br>Setting +<br>Offset) <sup>24[24]</sup> | Programmable<br>Resistance Range                 | Accuracy, ±(% of resistance setting    Offset) [24] |
| 1 μΑ                          | 0 to ±4 MΩ                       | 0.05% + 100 Ω                                                            | $\pm 2.5 \ M\Omega$ to $\pm infinity$            | 0.05%    100 GΩ                                     |
| 10 μΑ                         | 0 to ±400 kΩ                     | 0.05% + 10 Ω                                                             | ±250 kΩ to<br>±infinity                          | 0.05%    10 GΩ                                      |
| 100 μΑ                        | 0 to ±40 kΩ                      | 0.05% + 1 Ω                                                              | $\pm 25~\text{k}\Omega$ to $\pm \text{infinity}$ | 0.05%    1 GΩ                                       |
| 1 mA                          | 0 to ±4 kΩ                       | 0.05% + 100 mΩ                                                           | ±2.5 kΩ to<br>±infinity                          | 0.05%    100 ΜΩ                                     |
| 10 mA                         | 0 to ±400 Ω                      | 0.05% + 10 mΩ                                                            | $\pm 250~\Omega$ to $\pm infinity$               | 0.05%    10 ΜΩ                                      |
| 100 mA                        | 0 to ±40 Ω                       | 0.05% + 1 mΩ                                                             | $\pm 25~\Omega$ to $\pm infinity$                | 0.05%    1 ΜΩ                                       |
| 3 A                           | 0 to ±1.25 Ω                     | 0.08% + 100 μΩ                                                           | ±750 mΩ to ±infinity                             | 0.08%    10 kΩ                                      |

# **Measurement and Update Timing**

| Available sample rates <sup>25</sup> | (1.8 MS/s)/N, nominal |
|--------------------------------------|-----------------------|
|                                      |                       |

#### where

- $N = 1, 2, 3, \dots 2^{24}$
- S is samples
- 24. Accuracy is typical and applies within ±5 °C of last self calibration.
- 25. When source-measuring, both the NI-DCPowerSource Delay and Aperture Time properties affect the sampling rate. When taking a measure record, only the Aperture Time property affects the sampling rate.

| Sample rate accuracy                     | Equal to PXIe_CLK100 accuracy, nominal    |                                 |  |
|------------------------------------------|-------------------------------------------|---------------------------------|--|
| Maximum measure rate to host             | 1.8 MS/s per channel, continuous, nominal |                                 |  |
| Maximum source update rate <sup>26</sup> | 100,000 updates/s, nominal                |                                 |  |
| Input trigger to                         |                                           |                                 |  |
| Source event delay                       |                                           | 10 μs, nominal                  |  |
| Source event jitter                      |                                           | 2 μs <sub>pk-pk</sub> , nominal |  |
| Measure event jitter                     |                                           | 2 μs <sub>pk-pk</sub> , nominal |  |

# **Triggers**

# **Input Triggers**

| Trunca                                               | Start            |                                |  |
|------------------------------------------------------|------------------|--------------------------------|--|
|                                                      | Source           |                                |  |
| Types                                                | Sequence Advance |                                |  |
|                                                      | Measure          |                                |  |
| Sources (PXI trigger lines 0 to 7) <sup>[27]27</sup> |                  |                                |  |
| Polarity                                             |                  | Active high (not configurable) |  |

<sup>26.</sup> As the source delay is adjusted or if advanced sequencing is used, maximum source update rates may vary.

| Minimum pulse width                                                   | 100 ns                         |
|-----------------------------------------------------------------------|--------------------------------|
| Destinations <sup>28</sup> (PXI trigger lines 0 to 7) <sup>[27]</sup> | l                              |
| Polarity                                                              | Active high (not configurable) |
| Minimum pulse width                                                   | >200 ns                        |

## **Output Triggers (Events)**

| Types                                                   | Source Complete Sequence Iteration Complete Sequence Engine Done Measure Complete |                                |
|---------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|
| Destinations (PXI trigger lines 0 to 7) <sup>[27]</sup> |                                                                                   |                                |
| Polarity                                                |                                                                                   | Active high (not configurable) |
| Pulse width                                             |                                                                                   | 230 ns                         |

- 27. Pulse widths and logic levels are compliant with *PXI Express Hardware Specification Revision* 1.0 ECN 1.
- 28. Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.

# **Physical**

| Dimensions                                     | 3U, one-slot, PXI Express/CompactPCI Express module 2.0 cm × 13.0 cm × 21.6 cm (0.8 in. × 5.1 in. × 8.5 in.) |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Weight                                         |                                                                                                              |  |
| 20 W                                           | 448 g (15.8 oz)                                                                                              |  |
| 40 W                                           | 428 g (15.1 oz)                                                                                              |  |
| Front panel connectors 25-position D-SUB, male |                                                                                                              |  |

## **Calibration Interval**

| Recommended calibration interval | 1 year |
|----------------------------------|--------|
|                                  |        |

# **Power Requirements**

| +3.3 V | 1 A, typical                                      |
|--------|---------------------------------------------------|
| +12 V  | 1.3 A, typical at idle; 6 A, maximum at full load |

## **Environmental Characteristics**

# **Temperature and Humidity**

| Temperature |  |  |
|-------------|--|--|
|             |  |  |

| Operating        |                                                   | 0 °C to 55 °C <sup>29</sup> |
|------------------|---------------------------------------------------|-----------------------------|
| Storage          |                                                   | -40 °C to 71 °C             |
| Humidity         |                                                   |                             |
| Operating        | 10% to 90%, noncondensing <sup>30</sup>           |                             |
| Storage          | 5% to 95%, noncondensing                          |                             |
| Pollution Degree | 2                                                 |                             |
| Maximum altitude | 2,000 m (800 mbar) (at 25 °C ambient temperature) |                             |

- 29. Not all chassis can achieve this ambient temperature range. Refer to PXI chassis specifications to determine the ambient temperature ranges your chassis can achieve.
- 30. When transitioning a device from a storage or operation environment with relative humidity above 70%, device should be allowed to stabilize in the lower humidity environment for several hours before use. Refer to the PXIe-4147 *Programming and Measurement Accuracy/Resolution* specifications for additional performance derating when operating above 70% relative humidity.