

PCI/PXI-6250

2025-03-14

n

Contents

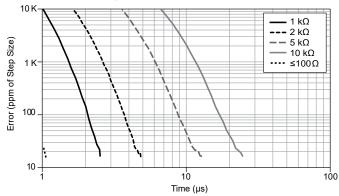
NI 6250 Specifications

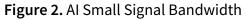
Analog Input

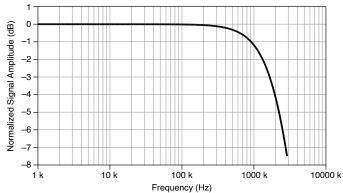
Number of channels	8 differential or 16 single ended		
ADC resolution	16 bits		
DNL	No missing c	No missing codes guaranteed	
INL	Refer to the <u>AI Absolute Accuracy</u> section		
Sample rate			
Single channel maximum		1.25 MS/s	
Multichannel maximum (aggregate)		1.00 MS/s	
Minimum		No minimum	
Timing resolution	50 ns		
Timing accuracy	50 ppm of sample rate		
Input coupling	DC		

		±0.1 V, ±0.2 V, ±0.5 V, ±1 V, ±2 V, ±5 V, ±10 V		
Maximum working voltage for analog inputs (signal + common mode)		±11 V of AI GND		
CMRR (DC to 60 Hz)		100 dB		
Input impedance				
Device on				
AI+ to AI GND	AI+ to AI GND >10 GΩ in parallel with 10		0 pF	
Al- to Al GND	>10 G Ω in parallel with 100 pF			
Device off				
AI+ to AI GND			820 Ω	
AI- to AI GND		820 Ω		
Input bias current		±100 pA		
Crosstalk (at 100 kHz)				
Adjacent channels				-75 dB
Non-adjacent channels				-95 dB

Small signal bandwidth (-3 dB)		1.7 MHz	
Input FIFO size		4,095 samples	
Scan list memory		4,095 entries	
Data transfers		DMA (scatter-gather), interrupts, programmed I/O	
Overvoltage protection for all analog input and sense ch		annels	
Device on	±25 V for up to four Al pins		
Device off	±15 V for up to four AI pins		
Input current during overvoltage condition		±20 mA maximum/Al pin	


Settling Time for Multichannel Measurements


Table 1. Settling Time for Multichannel Measurements


Range	±60 ppm of Step (±4 LSB for Full-Scale Step)	±15 ppm of Step (±1 LSB for Full-Scale Step)
±1 V, ±2 V, ±5 V, ±10 V	1 µs	1.5 μs
±0.5 V	1.5 μs	2 µs
±0.1 V, ±0.2 V	2 µs	8 µs

Typical Performance Graphs

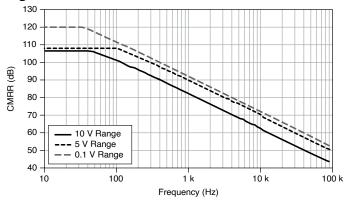

Figure 1. Settling Error versus Time for Different Source Impedances

Figure 3. AI CMRR

AI Absolute Accuracy

Note Accuracies listed are valid for up to two years from the device external calibration.

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)	Sensitivity (µV)
10	-10	60	20	21	280	1,920	112.0
5	-5	70	20	21	140	1,010	56.0
2	-2	70	20	24	57	410	22.8
1	-1	80	20	27	32	220	12.8
0.5	-0.5	90	40	34	21	130	8.4
0.2	-0.2	130	80	55	16	74	6.4
0.1	-0.1	150	150	90	15	52	6.0

 Table 2. AI Absolute Accuracy

Note Sensitivity is the smallest voltage change that can be detected. It is a function of noise.

Gain tempco	13 ppm/°C
Reference tempco	1 ppm/°C
INL error	60 ppm of range

AI Absolute Accuracy Equation

AbsoluteAccuracy = Reading · (GainError) + Range · (OffsetError) + NoiseUncertainty

 GainError = ResidualAIGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal)

 OffsetError = ResidualAIOffsetError + OffsetTempco · (TempChangeFromLastInternalCal) + INLError

• NoiseUncertainty = $\frac{\text{Random Noise} \cdot 3}{\sqrt{100}}$ for a coverage factor of 3 σ and averaging 100 points.

AI Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 100
- CoverageFactor = 3σ

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

- GainError = 60 ppm + 13 ppm \cdot 1 + 1 ppm \cdot 10 = 83 ppm
- OffsetError = 20 ppm + 21 ppm · 1 + 60 ppm = 101 ppm
- NoiseUncertainty = $\frac{280 \ \mu V \cdot 3}{\sqrt{100}}$
 - = 84 μV
- AbsoluteAccuracy = 10 V · (GainError) + 10 V · (OffsetError) + NoiseUncertainty = 1,920 μV

Analog Triggers

Number of triggers	1
Source	AI <015>, APFI 0

Functions	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase				
Source level					
AI <015>		±Full	±Full scale		
APFI 0		±10 V			
Resolution	10 bits, 1 in 1,024				
Modes	Analog edge triggering, analog edge triggering with hysteresis, and analog window triggering				
Bandwidth (-3 d	IB)				
Al <015>		3.4 MHz			
APFI 0			3.9 MHz		
Accuracy	uracy ±1%				
APFI 0 characteristics					
Input impedance 10 kΩ			10 kΩ		
Coupling				DC	
Protection, power on ±30 V			±30 V		

Protection, power off	±15 V
-----------------------	-------

Digital I/O/PFI

Static Characteristics

Number of channels	24 total, 8 (P0.<07>), 16 (PFI <07>/P1, PFI <815>/P2)
Ground reference	D GND
Direction control	Each terminal individually programmable as input or output
Pull-down resistor	50 kΩ typical, 20 kΩ minimum
Input voltage protection	±20 V on up to two pins ^[1]

Waveform Characteristics (Port 0 Only)

Terminals used	Port 0 (P0.<07>)
Port/sample size	Up to 8 bits
Waveform generation (DO) FIFO	2,047 samples
Waveform acquisition (DI)	2,047 samples

FIFO		
DI Sample Clock frequency	0 MHz to 10 MHz, system and bus activity dependent	
DO Sample Clock frequen	су	
Regenerate from FIFO		0 MHz to 10 MHz
Streaming from memory		0 MHz to 10 MHz, system and bus activity dependent
Data transfers	DMA (scatter-gather), interrupts, programmed I/O	
DI or DO Sample Clock source ^[2]	Any PFI, RTSI, AI Sample or Convert Clock, Ctr n Internal Output, and many other signals	

PFI/Port 1/Port 2 Functionality

Functionality	Static digital input, static digital output, timing input, timing output
Timing output sources	Many AI, counter, DI, DO timing signals
Debounce filter settings	125 ns, 6.425 μs, 2.56 ms, disable; high and low transitions; selectable per input

Recommended Operating Conditions

Level	Minimum	Maximum
Input high voltage (V _{IH})	2.2 V	5.25 V
Input low voltage (V _{IL})	0 V	0.8 V
Output high current (I _{OH}) P0.<07>		-24 mA
Output high current (I _{OH}) PFI <015>/P1/P2	_	-16 mA
Output low current (I _{OL}) P0.<07>	_	24 mA
Output low current (I _{OL}) PFI <015>/P1/P2		16 mA

Electrical Characteristics

Level	Minimum	Maximum
Positive-going threshold (VT+)	—	2.2 V
Negative-going threshold (VT-)	0.8 V	_
Delta VT hystersis (VT+ - VT-)	0.2 V	
I _{IL} input low current (V _{in} = 0 V)	_	-10 μA
I _{IH} input high current (V _{in} = 5 V)	_	250 μΑ

Digital I/O Characteristics

Figure 4. P0.<0..7>: Ioh versus Voh

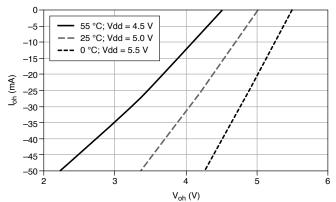


Figure 5. PFI <0..15>/P1/P2: I_{oh} versus V_{oh}

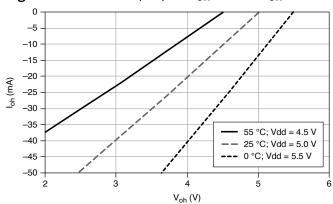
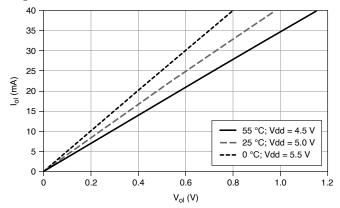



Figure 6. P0.<0..7>: I_{ol} versus V_{ol}

40 55 °C; Vdd = 4.5 V 35 --- 25 °C; Vdd = 5.0 V --- 0 °C; Vdd = 5.5 V 30 25 l_{ol} (mA) 20 15 10 5 0 0.2 0.4 0.6 0.8 1.0 1.2 0 $V_{ol}\left(V\right)$

Figure 7. PFI <0..15>/P1/P2: I_{ol} versus V_{ol}

General-Purpose Counters/Timers

Number of counter/ timers	2
Resolution	32 bits
Counter measurements	Edge counting, pulse, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	80 MHz, 20 MHz, 0.1 MHz
External base clock frequency	0 MHz to 20 MHz

Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Routing options for inputs	Any PFI, RTSI, PXI_TRIG, PXI_STAR, analog trigger, many internal signals
FIFO	2 samples
Data transfers	Dedicated scatter-gather DMA controller for each counter/timer; interrupts; programmed I/O

Frequency Generator

Number of channels	1
Base clocks	10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Output can be available on any output PFI or RTSI terminal.

Phase-Locked Loop (PLL)

Number of PLLs	1
Reference signal	PXI_STAR, PXI_CLK10, RTSI <07>
Output of PLL	80 MHz Timebase; other signals derived from 80 MHz Timebase including 20 MHz and 100 kHz Timebases

External Digital Triggers

Source	Any PFI, RTSI, PXI_TRIG, PXI_STAR
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Counter/timer function	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Digital waveform generation (DO) function	Sample Clock
Digital waveform acquisition (DI) function	Sample Clock

Device-to-Device Trigger Bus

PCI	RTSI <07> ^[3]
ΡΧΙ	PXI_TRIG <07>, PXI_STAR
Output selections	10 MHz Clock, frequency generator output, many internal signals
Debounce filter settings	125 ns, 6.425 μs , 2.56 ms, disable; high and low transitions; selectable per input

Bus Interface

PCI/PXI	3.3 V or 5 V signal environment
DMA	6, can be used for analog input, digital input, digital output, counter/timer 0,
channels	counter/timer 1

The PXI device can be installed in PXI Express hybrid slots. It cannot be used to control SCXI in PXI/SCXI combo chassis.

Power Requirements

Current draw from bus during no-load condition ^[4]	
+5 V	0.03 A
+3.3 V	0.725 A

+12 V	0.35 A
Current draw from bus during AI overvoltage condition ^[4]	
+5 V	0.03 A
+3.3 V	1.2 A
+12 V	0.38 A

Current Limits

Caution Exceeding the current limits may cause unpredictable behavior by the device and/or PC/chassis.

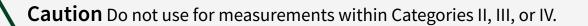
PCI, +5 V terminal	1 A maximum ^[5]	
ΡΧΙ		
+5 V terminal		1 A maximum ^[5]
P0/PFI/P1/P2 and +5 V terminals combined		2 A maximum

Physical Characteristics

Dimensions	
PCI printed circuit board	10.6 cm × 15.5 cm(4.2 in. × 6.1 in.)

PXI printed circuit board		Standard 3U PXI
Weight		
PCI	142 g (5 oz)	
ΡΧΙ	212 g (7.5 oz)	

Calibration


Recommended warm-up time	15 minutes
Calibration interval	2 years

Maximum Working Voltage

Connect only voltages that are below these limits.

Channel-to-earth	11 V, Measurement Category I

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Note Measurement Categories CAT I and CAT O (Other) are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Environmental

Operating temperature	0 °C to 55 °C
Storage temperature	-20 °C to 70 °C
Humidity	10% RH to 90% RH, noncondensing
Maximum altitude	2,000 m
Pollution Degree (indoor use only)	2

Indoor use only.

Shock and Vibration (PXI Only)

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)	
Random vibration		
Operating	5 Hz to 500 Hz, 0.3 g _{rms}	

Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC 60068-2-64. Nonoperating
	test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the <u>Online Product Certification</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations. **Note** Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the <u>Online Product Certification</u> section.

CE Compliance 🤇 🧲

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

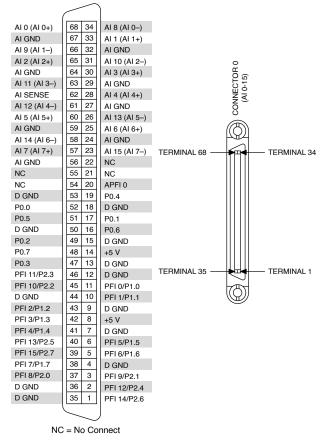
Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers


• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国RoHS)

 ●●●中国RoHS-NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs china.)

Device Pinout

Figure 8. NI PCI/PXI-6250 Pinout

