FD-11634 Specifications

Contents

FD-11634 Specifications	3

FD-11634 Specifications

Conditions

Specifications are typical and valid at -40 °C to 85 °C unless otherwise noted.

Input Characteristics

Number of channels	8 analog input channels
Isolation	Galvanic isolation between channels and to chassis
Input voltage range (AI+ to AI-)	±10 V, ±1 V
ADC resolution	24 bits
Type of ADC	Delta-Sigma (with analog prefiltering)
Sample mode	Simultaneous
Input coupling	Software-selectable AC/DC
TEDS support	IEEE 1451.4 TEDS Class I
TEDS capacitive drive	5,000 pF

Timebases $(f_M)^{[1]}$				
Frequency	13.1072	13.1072 MHz, 12.8 MHz, 12.288 MHz, 10.24 MHz		
Accuracy	±30 ppr	±30 ppm maximum		
Sampled data rate range (f_S)				
Minimum			500 Sample/s	
Maximum		102.4 kSample/s		
Sampled data rates	(f _S)	Refer to the following table for sample data rates supported for each timebase		

 $\textbf{Table 1.} \ \, \textbf{Timebases (} f_{M}\textbf{)} \ \, \textbf{and Supported Sampled Data Rates (} f_{S}\textbf{)}, \textbf{(} kSamples/s\textbf{)}$

13.1072 MHz	12.8 MHz	12.288 MHz	10.24 MHz
102.4	100.0	96.0	80.0
51.2	50.0	48.0	40.0
34.133	33.333	32.0	26.667
25.6	25.0	24.0	20.0*
20.48	20.0	19.2	16.0
17.067	16.667	16.0*	13.333
12.8	12.5	12.0	10.0*
10.24	10.0	9.6	8.0
8.533	8.333	8.0*	6.667
6.4	6.25	6.0	5.0*
5.12	5.0	4.8	4.0

13.1072 MHz	12.8 MHz	12.288 MHz	10.24 MHz
4.267	4.167	4.0*	3.333
3.2	3.125	3.0	2.5*
2.56	2.5	2.4	2.0
2.133	2.083	2.0*	1.667
1.6	1.563	1.5	1.25*
1.28	1.25	1.2	1.0
1.067	1.042	1.0*	0.833
0.8	0.781	0.75	0.625
0.64	0.625	0.6	0.5

Note: For sample rates that can be obtained using two different timebases, the lowest noise (highest resolution) option is indicated with an asterisk (*).

Input impedance (AI+ to AI-)		1 ΜΩ
Input capacitance (AI+ to AI-)		520 pF
AC coupling response		
-3 dB	0.53 Hz	
-0.1 dB	3.48 Hz	

Table 2. Accuracy

Nominal Input Range	Temperature	Gain Error (% of Reading)	DC-Coupled Offset Error (% of Range, mV)
	0.05%, typical	0.012%, 1.2 mV, typical	
±10 V	5 °C to 40 °C	0.1%, maximum	0.028%, 2.8 mV, maximum

Nominal Input Range	Temperature	Gain Error (% of Reading)	DC-Coupled Offset Error (% of Range, mV)
	-40 °C to 85 °C	0.15%, maximum	0.0078%, 7.8mV, maximum
5 °C to 40 °C ±1 V	0.06%, typical	0.02%, 0.2 mV, typical	
	5 °C to 40 °C	0.12%, maximum	0.04%, 0.4 mV, maximum
	-40 °C to 85 °C	0.2%, maximum	0.14%, 1.4 mV, maximum

AC-coupled residual offset	
5 °C to 40 °C	<5 mV typical
-40 °C to 85 °C	<50 mV typical

Table 3. Stability

Input Range	Gain Drift	DC-Coupled Offset Drift
±10 V	±15 ppm/°C	±50 μV/°C
±1 V	±20 ppm/°C	±15 μV/°C

Gain mismatch (channel-to-channel, DC to 40 kHz)	0.1 dB maximum
Phase mismatch (channel-to-channel, 1 kHz to 40 kHz)	0.017°/kHz maximum
Phase nonlinearity (f_s = 102.4 kSample/s, 1 kHz to 40 kHz)	0.18° maximum
Crosstalk (1 kHz)	-120 dB

CMRR to chassis/earth (f _{in} = 60 Hz)	105 dB
---	--------

Table 4. Input Noise with Brickwall Filter

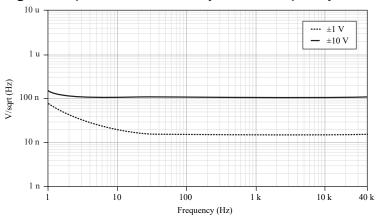

Input Range	1 kSample/s	10 kSample/s	102.4 kSample/s
±10 V	6.0 μV RMS	9 μV RMS	25 μV RMS
±1 V	0.7 μV RMS	1.2 μV RMS	3.5 μV RMS

Table 5. Dynamic Range (at 1 kHz Input Frequency, -60 dBF Amplitude) with Brickwall Filter

Data Data (IsCample (a)	ADC Decimation Ratio	Input Range	
Data Rate (kSample/s)		±10 V	±1 V
102.4	64	108	106
51.2	128	111	109
25.6	256	114	112
12.8	512	117	115
6.4	1024	120	118

Spectral noise density (f_s = 102.4 kSample/s)		
±10 V input range	$\frac{120nV}{\sqrt{Hz}}$ at1kHz	
±1 V input range	$\frac{16nV}{\sqrt{Hz}}at1kHz$	

Figure 1. Spectral Noise Density versus Frequency

Table 6. Total Harmonic Distortion (THD)

Input Range	1 kHz	20 Hz to 20 kHz	20 kHz to 40 kHz
±10 V	-105 dB	-98 dB	-90 dB
±1 V	-105 dB	-88 dB	-75 dB

Table 7. Total Harmonic Distortion + N (THD+N)

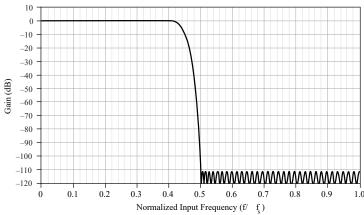
Input Range	20 Hz to 20 kHz	20 kHz to 40 kHz
±10 V	-98 dB	-90 dB
±1 V	-88 dB	-75 dB

Table 8. Intermodulation Distortion (IMD)

Input Range	SMPTE 60 Hz + 7 kHz	CCIF 11 kHz + 12 kHz
±10 V	-98 dB	-93 dB
±1 V	-98 dB	-85 dB

Test standards: SMPTE 60 Hz + 7 kHz, amplitude ratio 4:1 with total amplitude at 0 dBFS, and CCIF 11 kHz + 12 kHz, amplitude ratio 1:1 with each tone amplitude at -6 dBFS, up to 5th order harmonic.

Excitation current (software-selectable on/off)			
Minimum		4 mA	
Typical		4.17 mA	
Excitation noise 4 nA RMS, 0.3		1 Hz to 40 kHz BW	
Short circuit detection			
Detection threshold (AI+ to AI-)			180 mV
Detection threshold hysteresis			50 mV
Compliance voltage 23 V maximu		ım	


Note If you are using an IEPE sensor, use the following equation to ensure your configuration meets the IEPE compliance voltage range: (V_{bias} ± V_{full-scale}) must be 0 V to 23 V where V_{bias} is the bias voltage of the IEPE sensor, and $V_{\text{full-scale}}$ is the full-scale voltage of the IEPE sensor.

Filtering

Brickwall filter (default)		
Input delay	36/ f _s + 1.5 μs	
Input delay tolerance	±100 ns	

Passband frequency	DC to 0.4 · f _S
Stopband frequency	At or above $0.5 \cdot \boldsymbol{f_S}$
Stopband rejection	≥100 dB
Alias-free bandwidth	0.5 · f _S

Figure 2. Brickwall Filter Magnitude Response

Butterworth filter		
Input delay	Refer to the Butterworth Filter Input Delay for Available Timebases (f _M) table.	
Input delay tolerance	±100 ns	
Filter order	2nd or 4th order	

Table 9. Butterworth Filter Cutoff Frequencies (-3 dB Point) for Available Timebases

13.1072 MHz	12.8 MHz	12.288 MHz	10.24 MHz
4096 Hz	4000 Hz	3840 Hz	3200 Hz
2048 Hz	2000 Hz	1920 Hz	1600 Hz
1024 Hz	1000 Hz	960 Hz	800 Hz
512 Hz	500 Hz	480 Hz	400 Hz
256 Hz	250 Hz	240 Hz	200 Hz
128 Hz	125 Hz	120 Hz	100 Hz

Note Input delay is the delay for signal frequencies much lower than the cutoff frequency. Maximum input delay is the peak delay at high signal frequency. The following figures depict how the input delay varies with signal frequency. Refer to the *FD-11634 User Guide* for more information.

Figure 3. Butterworth Filter Input Delay (2nd Order, with 12.8 MHz Timebase, 4 kHz, 2 kHz, 1 kHz Filter)

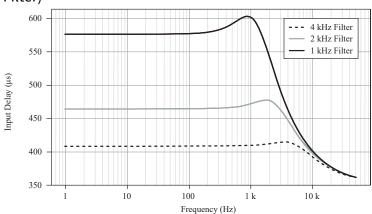
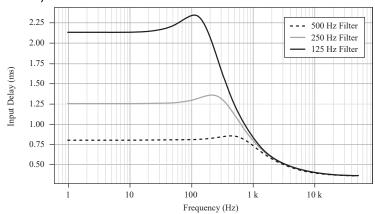
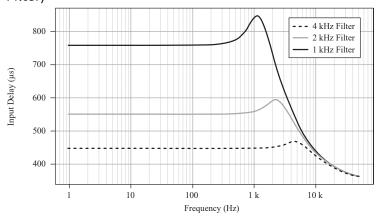




Figure 4. Butterworth Filter Input Delay (2nd Order, with 12.8 MHz Timebase, 500 Hz, 250 Hz, 125 Hz

Filter)

Figure 5. Butterworth Filter Input Delay (4th Order, with 12.8 MHz Timebase, 4 kHz, 2 kHz, 1 kHz Filter)

Figure 6. Butterworth Filter Input Delay (4th Order, with 12.8 MHz Timebase, 500 Hz, 250 Hz, 125 Hz Filter)

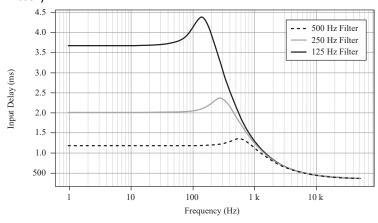
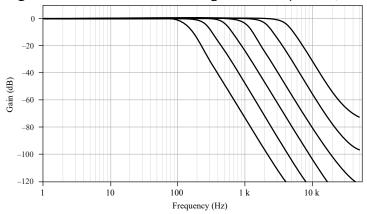
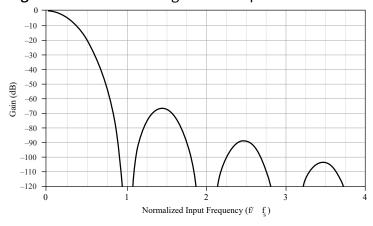




Figure 7. Butterworth Filter Magnitude Response (4th Order, with 12.8 MHz Timebase)

Comb filter		
Input delay	5/ f _s + 1.5 μs	
Input delay tolerance	±100 ns	
Notches	f _s , 2 f _s , 3 f _s ,	

Figure 8. Comb Filter Magnitude Response

Time-Based Triggers

pe Start Trigger, Sync Pulse	
------------------------------	--

Timing and Synchronization

Protocol	IEEE 802.1AS for network synchronization over 1000 Base-TX, full-duplex
Network synchronization accuracy ^[2]	<1 µs
Network synchronization accuracy with optimized configuration ^[3]	<100 ns

Note When configured to use IEEE 1588, performance of synchronization may vary from these specifications.

Network Interface

Network protocols	TCP/IP, UDP
Network ports used	HTTP:80 (configuration only), TCP:3580; UDP:5353 (configuration only), TCP:5353 (configuration only); TCP:31415; UDP:7865 (configuration only), UDP:8473 (configuration only)
Network IP configuration	DHCP + Link-Local, DHCP, Static, Link-Local
Default MTU size	1500 bytes

Ethernet

Number of ports	2 8-pin X-coded M12 ports, internally switched [4]
Network interface	1000 Base-TX, full-duplex; 1000 Base-TX, half-duplex; 100 Base-TX, full-duplex; 100 Base-TX, half-duplex; 10 Base-T, full-duplex; 10 Base-T, half-duplex
Communication rates	10/100/1000 Mbps, auto-negotiated
Maximum cabling distance	100 m/segment
Maximum hops per line ^[5]	15

Power Requirements

Notice The protection provided by the FD-11634 can be impaired if it is used in a manner not described in the *FD-11634 User Guide* .

Voltage input range	
Vin	9 V DC to 30 V DC
V _{aux}	Up to 30 V DC

Maximum device power consumption ^[6]	10 W
Power input connector	5-pin L-coded male M12 connector
Power output connector	5-pin L-coded female M12 connector

Current Limits

Caution Exceeding the current limits may cause damage to the device. Stay below a maximum of 10 A shared between both Input and Aux terminals.

Power IN/OUT terminals	
V _{in} 10 A maximum	
V _{aux} 10 A maximum total (combined with V _{in})	
Recommended external overcurrent protection 16 A, slow blow fuse	

Physical Characteristics

Dimensions	198.5 mm × 77.4 mm × 47.1 mm (7.8 in. × 3.0 in. × 1.9 in.)
Weight	1.179 kg (2 lb9.6 oz)
Input connection	

Number	8	
Туре	5-pin A-coded M12 connector	rs
Torque for M12 connectors (power, Ethernet, input connections)		0.6 N·m (5.31 lb·in.)

Calibration

Calibration interval	1 year
----------------------	--------

Environmental Characteristics

Temperature and Humidity

Refer to the *FD-11634 User Guide* for more information about meeting these specifications.

Temperature		
Operating		-40 °C to 85 °C
Storage		-40 °C to 100 °C
Operating and storage humidity	Up to 100% relative humidity, condensing or noncondensing	
Ingress protection	IP65/IP67	

Pollution Degree	4
Maximum altitude	5,000 m

Note Failure to follow the mounting instructions in the *FD-11634 User Guide* can cause temperature derating.

Note M12 connectors must be mated to cables or have caps installed on them to meet IP65/IP67 requirements. Cover the unused connectors with the included plastic caps or optional metal caps whenever water, dust, or dirt are present.

Note Avoid long periods of exposure to sunlight.

Shock and Vibration

Operating vibration		
Random	10 g RMS, 5 Hz to 2,000 Hz	
Sinusoidal	10 g, 20 Hz to 2,000 Hz 12.4 mm minimum pk-pk displacement, 5 Hz to 20 Hz	
Operating shock	100 g, 11 ms half sine, 3 shocks at 6 orientations, 18 total 40 g, 6 ms half sine, 4,000 shocks at 6 orientations, 24,000 total	

Environmental Standards

This product meets the requirements of the following environmental standards for electrical equipment.

- IEC 60068-2-1 Cold
- IEC 60068-2-2 Dry heat
- IEC 60068-2-6 Sinusoidal operating vibration
- IEC 60068-2-27 Operating shock
- IEC 60068-2-30 Damp heat cyclic (12 + 12h cycle)
- IEC 60068-2-64 Random operating vibration

Note To verify marine approval certification for a product, refer to the product label or visit <u>ni.com/product-certifications</u> and search for the certificate.

Safety Voltages

Connect only voltages that are within the following limits:

Channel-to-channel isolation			
Continuous working voltage ^[7]	60 V DC (Dry Locations); 35 VDC (Wet Locations)		
Transient overvoltage ^[8]	1,000 V RMS, verified by 5 s withstand		
Channel-to-earth ground isolation			
Continuous working voltage	60 V DC (Dry Locations); 35 VDC (Wet Locations)		
Transient overvoltage	1,000 V RMS, verified by 5 s withstand		

Overvoltage protection ^[9]	±30 V between any two pins on the connector
---------------------------------------	---

These test and measurement circuits are **not** rated for measurements performed on circuits directly connected to the electrical distribution system referred to as MAINS.

MAINS is a hazardous live electrical supply system to which equipment is designed to be connected to for the purpose of powering equipment. This product is rated for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Warning Do not connect the FD-11634 to signals or use for measurements within Measurement Categories II, III, or IV, or for measurements on MAINs circuits or on circuits derived from Overvoltage Category II, III, or IV which may have transient overvoltages above what the product can withstand. The product must not be connected to circuits that have a maximum voltage above the continuous working voltage, relative to earth or to other channels, or this could damage and defeat the insulation. The product can only withstand transients up to the transient overvoltage rating without breakdown or damage to the insulation. An analysis of the working voltages, loop impedances, temporary overvoltages, and transient overvoltages in the system must be conducted prior to making measurements.

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility Standards

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Industrial immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-003: Class A emissions

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Notice For EMC declarations and certifications, and additional information, refer to the Product Certifications and Declarations section.

Note To ensure the specified EMC performance, operate this product only with shielded Ethernet cables.

CE Compliance (¿

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国RoHS)

• ●●● 中国RoHS—NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)