PXIe-5624 Specifications

Contents

PXIe-5624 Specifications

PXIe-5624 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Warranted* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Internal Reference Clock source is used.
- Dither level is set to high.
- Digital downconversion (DDC) mode enabled.

Warranted specifications are valid under the following conditions unless otherwise noted.

- 20 minutes warm-up time after the chassis is powered on and the LabVIEW Instrument Design Libraries for IF Digitizers software is loaded and recognizes the PXIe-5624. The warm-up time ensures that the PXIe-5624 and test instrumentation are at a stable operating temperature.
- Calibration cycle is maintained.
- Calibration IP is used properly during the creation of custom FPGA bitfiles.^[1]

• Chassis fan speed is set to high. In addition, NI recommends using slot blockers and EMC filler panels in empty module slots to minimize temperature drift.

Modes of Operation

The PXIe-5624 is a software designed instrument with a user-programmable FPGA.

The LabVIEW Instrument Design Libraries for IF Digitizers includes example FPGA images to use the PXIe-5624 in two modes of operation.

- **Digitizer Mode**—Data from the ADC is stored directly into DRAM on the PXIe-5624 and fetched from the host. This data is not equalized or calibrated.
- **Digital Downconversion (DDC) Mode**—Data from the ADC goes through signal processing before being stored in DRAM. The data is shifted in frequency, decimated, equalized, and calibrated using digital signal processing (DSP) on the FPGA.

Frequency

Input frequency range (3 dB bandwidth)	5 Mł	Iz to 2 GHz, typical ^[2]	
Equalized bandwidth			
400 MHz acquisition FPGA image ^[3]		95 Hz to 400 MHz	
800 MHz acquisition FPGA image ^[3]		800 MHz	

Note The equalized bandwidth cannot cross Nyquist boundaries:
5 MHz ≤ DDC Center Frequency ± BW/2 ≤ 1 GHz,
1 GHz ≤ DDC Center Frequency ± BW/2 ≤ 2 GHz

Bandwidth resolution (400 MHz acquisition FPGA image ^[3])	3.56 μHz
Frequency shift resolution	7.13 μHz
Dither frequency range	1 MHz to 50 MHz, typical

Internal Frequency Reference

Initial adjustment accuracy	±0.2 × 2	10 ⁻⁶
Temperature stability		
23 ± 5 °C		±0.5 × 10 ⁻⁶ , nominal
0 °C to 55 °C		±2.0 × 10 ⁻⁶ , maximum
Aging	±0.5 × 2	10 ⁻⁶ per year, maximum
Accuracy	Initia	l adjustment accuracy \pm Aging \pm Temperature stability

Frequency Reference/ADC Sample Clock Input (CLK IN)

Refer to <u>CLK IN</u> for more information about frequency reference/ADC Sample Clock input (CLK IN).

Frequency Reference/ADC Sample Clock Output (CLK OUT)

Refer to <u>CLK OUT</u> for more information about frequency reference/ADC Sample Clock output (CLK OUT).

Spectral Purity

Sampling jitter, nominal		
CLK OUT	172 fs RMS ^[4]	
IF IN	172 fs RMS ^[5]	

Table 1. Single Sideband Phase Noise

Carrier Frequency (MHz)	Offset	SSB Phase Noise (dBc/Hz), Typical
	100 Hz	-95
	1 kHz	-115
187.5	10 kHz	-133
	100 kHz	-147
	1 MHz	-149
800	100 Hz	-82
	1 kHz	-103
	10 kHz	-119
	100 kHz	-142
	1 MHz	-146

Figure 1. Measured SSB Phase Noise^[7] at 187 MHz, Multiple Clock Configurations^[8]

Figure 3. Measured Sampling Clock Phase Noise^[11] with an Internal Reference Clock, 2 GHz

IF Input (IF IN)

Number of channels	1 (IF IN)

Table 2. Full-Scale Input Range

Dither Setting	Value	Value (dBm), Typical
Off	8 dBm (1.58 Vpk-pk)	9
On	6 dBm (1.26 Vpk-pk)	7

Absolute Amplitude Accuracy

Table 3. Absolute Amplitude Accuracy (dBm)^[12]

Frequency	15 °C to 35 °C (Self-Calibration ± 5 °C)	0 °C to 55 °C (Self-Calibration ± 5 °C)
	±0.25	±0.30
25 MHz to 1 GHz, dittier enabled	±0.10, typical	±0.15, typical
1 GHz to 1.975 GHz, dither enabled	±0.30	±0.35
	±0.15, typical	±0.20, typical
25 MHz to 1 GHz, dither disabled	±0.20, typical	±0.25, typical
1 GHz to 1.975 GHz, dither disabled	±0.25, typical	±0.30, typical

Note The absolute amplitude accuracy specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard device temperature sensor.

Table 4. Linearity

	Linearity (dB)		
Input Power (dBFS)	Dither ON	Dither OFF	
≥-20	±0.10	_	
	±0.03, measured	±0.04, measured	
<-20 to >-50	±3.00	_	
	±0.04, measured	±0.15, measured	

Frequency Response

Figure 4. Measured Frequency Response^[13], Unequalized, Digitizer Mode

Average Noise Density

Average noise density	-149.5 dBFS/Hz, typical ^[14]

Figure 5. Measured Input Terminated Noise Density^[15], Dither Off, Digitizer Mode

Spurious Responses

Digitizer Mode

Effective number of bits (ENOB), typical ^[17]		
100 MHz	9.1	
410 MHz	9.0	
730 MHz	8.8	

Signal-to-noise ratio (SNR), typical ^[17]			
100 MHz	57.5 dB		
410 MHz	57 dB		
730 MHz	56 dB		
Spurious-free dynamic range (SFDR), typical $^{[18]}$			
50 MHz to 1.5 GHz		-72 dBc	
1.5 GHz to 2 GHz		-70 dBc	
48 MHz		-77 dBc	
100 MHz		-79 dBc	
185 MHz		-80 dBc	
410 MHz		-75 dBc	
650 MHz		-75 dBc	
730 MHz		-74 dBc	
925 MHz		-74 dBc	

Total harmonic distortion (THD), typical ^[19]		
50 MHz to 1.4 GHz	-72 dBc	
1.4 GHz to 2 GHz	-70 dBc	
48 MHz	-76 dBc	
100 MHz	-77 dBc	
185 MHz	-78 dBc	
410 MHz	-74 dBc	
650 MHz	-75 dBc	
730 MHz	-74 dBc	
925 MHz	-74 dBc	

DDC Mode

Third-order intermodulation distortion (IMD3), typical ^[20]		
50 MHz to 1 GHz	-75 dBc	
1 GHz to 1.975 GHz	-68 dBc	

Bandwidth (MHz)	Center Frequency (MHz)	SFDR (dBc)
100	187.5	-95 ^[21]
400	730	-76 ^[22]
30	500	-100, nominal
80	500	-100, nominal
100	500	-100, nominal
400	500	-87, nominal
800	500	-87, nominal

Table 5. S	purious-Free	Dynamic Range	(SFDR),	, Typical
		J · · · · · · · · · · · · · · · · · · ·	x - //	, , , , , , , , , , , , , , , , , , ,

DDC out-of-band suppression	>85 dB ^[23]
DDC frequency shift SFDR	-105 dBFS

Figure 8. Measured Single-Tone Spectrum, 800 MHz Instantaneous Bandwidth, DDC Mode^[25]

Figure 10. Measured Two-Tone Spectrum, 730 MHz Center Frequency, DDC Mode^[27]

Error Vector Magnitude (EVM)

20 MHz bandwidth 64-QAM EVM ^[28]		
900 MHz	-51.5 dB, nominal	
1.8 GHz	-50 dB, nominal	

Digitizer Characteristics

Resolution	12 bits
Digitizer mode sample rate	2 GS/s
PXI Express Bus	PXI Express x8 Gen 2

Onboard FPGA

FPGA	Xilinx Kintex-7 XC7K410T
Lookup tables (LUT)	254,200
Flip-flops	508,400
DSP48 slices	1,540

Embedded block RAM	28,620 kbits
Data transfers	DMA, interrupts, programmed I/O
Number of DMA channels	32

Onboard DRAM

Memory size	2 GB
Theoretical maximum data rate	6.4 GB/s

Onboard SRAM

Memory size	2 MB
Maximum data rate (read)	26 MB/s
Maximum data rate (write)	20 MB/s

Front Panel I/O

IF IN

Connector	SMA female

Input impedance	50 Ω, nominal
Coupling	AC
Absolute maximum input power	20 dBm, continuous wave (CW) RMS
Input return loss/VSWR	>15 dB/1.43:1 ^[29] , typical

CLK IN

Connector		SMA female		
Frequency				
ample Clock 4 GHz, 2 GH		z, 2 GHz	Hz	
Reference Clock 100 MHz, 10 M		Hz		
Tolerance ±5		±50 ppm		
Amplitude				
10 MHz and 100 MHz Reference Clocks			-3 dBm to 15 dBm ^[30]	
2 GHz and 4 GHz Sample Clocks		-5 dBm to 10 dBm		
Input impedance		50 Ω, no	minal	

Coupling	AC

CLK OUT

Connector	SMA female		
Frequency			
Sample Clock		2 GHz	
Reference Clock	100 MHz, 10 MHz ^[31]		
Tolerance	Same as Reference Clock or Sample Clock source ^[32]		
Amplitude, typical			
Reference Clock (CLK IN)		CLK IN input power + 3 dB, nominal	
Reference Clock (PXIe_CLK100)		7.5 dBm	
Sample Clock	5 dBm		
Output impedance	50 Ω, nominal		
Coupling	AC		

PFI 0 (Programmable Function Interface)

onnector		SMA female	
Voltage levels			
Absolute maximum input range -0.5 V		′ to 5.5 V	
VIL	0.8 V		
VIH	2.0 V		
V _{OL}	0.2 V with 100 μA load		
V _{OH}	2.9 V with 100 μA load		
Recommended operating voltage		0 V to 3.3 V	
Input impedance		10 kΩ, nominal	
Output impedance		50 Ω, nominal	
Maximum DC drive strength		24 mA	
Minimum required direction change latency		60 ns + 1 clock cycle ^[33]	

AUX I/O

Connector	HDMI		
Number of channels	12 d	12 digital input/output, bi-directional	
Voltage levels			
Absolute maximum input range		-0.5 V to 5.5 V	
VIL		0.8 V	
VIH		2.0 V	
V _{OL}		0.2 V with 100 μA load	
V _{OH}		2.9 V with 100 μA load	
Input impedance	10 kΩ, nominal		
Output impedance	50 Ω, nominal		
Maximum DC drive strength	24 n	nA	
Minimum required direction change latency	60 ns + 1 clock cycle ^[]		

Maximum toggle rate	10 MHz
Recommended operating voltage	0 V to 3.3 V
5 V maximum current	10 mA
5 V voltage tolerance	4.2 V to 5.0 V

Table 6. PXIe-5624 AUX I/O Connector Pin Assignments

AUX I/O Connector	Pin	Signal	Signal Description
	1	DIO (0)	Bidirectional single- ended (SE) digital I/O (DIO) data channel.
	2	GND	Ground reference for signals.
	3	DIO (1)	Bidirectional SE DIO data channel.
	4	DIO (2)	Bidirectional SE DIO data channel.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	GND	Ground reference for signals.
	6	DIO (3)	Bidirectional SE DIO data channel.
	7	DIO (4)	Bidirectional SE DIO data channel.
	8	GND	Ground reference for signals.
	9	DIO (5)	Bidirectional SE DIO data channel.
	10	DIO (6)	Bidirectional SE DIO data channel.

AUX I/O Connector	Pin	Signal	Signal Description
	11	GND	Ground reference for signals.
	12	DIO (7)	Bidirectional SE DIO data channel.
	13	DIO (8)	Bidirectional SE DIO data channel.
	14	NC	No connect.
	15	DIO (9)	Bidirectional SE DIO data channel.
	16	DIO (10)	Bidirectional SE DIO data channel.
	17	GND	Ground reference for signals.
	18	+5 V	+5 V power (10 mA maximum).
	19	DIO (11)	Bidirectional SE DIO data channel.

Power Requirements

 Table 7. Power Requirements

Voltage (V _{DC})	Typical Current (A)	Maximum Current (A)
+3.3	2.45	2.75
+12	1.95	2.2

Calibration

Calibration interval	1 year
----------------------	--------

Note For a two-year calibration interval, add 0.1 dB to the one-year specifications for <u>Absolute Amplitude Accuracy</u>.

Physical Characteristics

Hot Surface If the PXIe-5624 has been in use, it may exceed safe handling temperatures and cause burns. Allow the PXIe-5624 to cool before removing it from the chassis.

PXIe-5624 module	3U, one slot, PXI Express module		
Dimensions	21.6 cm × 2.0 cm × 13.0 cm (8.5 in. × 0.8 in. × 5.1 in.)		
Weight	454 g (16.0 oz)		

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C
---------------------------	---------------

Relative humidity range	10% to 90%, noncondensing
-------------------------	---------------------------

Storage Environment

Ambient temperature range	-40 °C to 71 °C
Relative humidity range	5% to 95%, noncondensing

Shock and Vibration

Operating shock	30 ք	g peak, half-sine, 11 ms pulse		
Random vibration				
Operating		5 Hz to 500 Hz, 0.3 g _{rms}		
Nonoperating		5 Hz to 500 Hz, 2.4 g _{rms}		

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国RoHS)

 ●●●中国RoHS-NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs_china.)