
LabVIEW NXG
Web Module

2025-03-20

Contents Contents
LabVIEW NXG 5.1 Web Module Manual . 4

LabVIEW NXG Web Module 5.1 New Features and Changes . 5
Developing a Web Application . 5

Creating a Web Application . 6
Creating User Interfaces . 7

Designing a Responsive User Interface . 7
Aligning and Arranging Objects in a Responsive User Interface 8

Customizing the Appearance of Controls in a WebVI . 10
Best Practices for Customizing the Appearance of Controls in a WebVI . .
12

Debugging a WebVI . 14
Building a Web Application . 15
Linking WebVIs in a Web Application . 16
Considerations for Packaging a Web Application . 17

Communicating Data with a Web Application . 18
Accessing Resource Files from a WebVI . 19
Retrieving Data From a Web Service . 20
Considerations When Accessing Data from Web Services . 23

Types of Cross-Origin HTTP Requests . 24
Enabling CORS for a Web Service . 25
Configuring CORS for a LabVIEW Web Service . 26

Configure a LabVIEW Web Service CORS for Open Access 28
Configure a LabVIEW Web Service CORS for Filtered Access 29
Configure a LabVIEW Web Service CORS for Credentialed Access 31

Sending a Credentialed Cross-Origin HTTP Request . 35
Communicating Data with Web Services Using WebVIs . 36

Using JavaScript with a Web Application . 38
Calling JavaScript Functions in a Web Application . 39

Preparing Your Code For Use With a JavaScript Library Interface 40
Defining Calls to JavaScript Functions using a JavaScript Library Interface . .
42
Integrating a JavaScript File Into a Web Application . 43

LabVIEW NXG Web Module

2 ni.com

Waiting for Asynchronous JavaScript Operations to Complete in a Web
Application . 44
Debugging JavaScript Library Interfaces . 48

Creating UI Elements with JavaScript . 49
Considerations When Creating UI Elements with JavaScript 52
JavaScript Reference Functionality . 53

JavaScript Resources . 54
Hosting a Web Application on a Server . 54

Hosting a Web Application on the NI Web Server . 57
Hosting a Web Application on the NI Application Web Server 58
Hosting a Web Application During Development . 60

Hosting a WebVI in SystemLink . 61
Using Hardware with a Web Application . 61

Using a Web Application with a CompactRIO Device . 63
Building Shareable Libraries . 66

Recommendations for Building a Web Application Library 66
Adding a Custom UI Palette to Your Web Application Library 67

LabVIEW NXG Web Module

© National Instruments 3

LabVIEW NXG 5.1 Web Module Manual

Use the LabVIEW NXG Web Module to create browser-based user interfaces to visualize
data from distributed systems. This manual contains step-by-step instructions for
working with WebVIs and creating web applications.

• Developing—Create a web application, design responsive UIs and controls, and
debug, build, and package your WebVIs.

• Communicating Data—Access WebVI resource files, web service data, and use web
services like SystemLink Tag and Message in your web application.

• Using JavaScript—Add JavaScript functions to your web application using a
JavaScript Library Interface (JSLI) document and create custom UI elements.

• Hosting—Learn about your hosting options during development and how to host
your web application to share with users.

• Using Hardware—Determine how to integrate your web application into your
hardware system to share measurement data and interact with your hardware.

• Sharing Code—Build a library and add custom palettes to share code and create
add-ons.

LabVIEW NXG Web Module

4 ni.com

Manuals for Related Products

• NI Web Server
• SystemLink
• SystemLink Cloud

LabVIEW NXG Web Module 5.1 New Features and Changes

LabVIEW NXG Web Module 5.1 adds new functionality to the previous release.

New Features

• Use the configuration pane to configure high color, low color, and fit type for
intensity graph scales.

• Programmatically set cursor style, cursor shape, and crosshair style of graphs and
charts.

• Programmatically read and write disabled indexes in a Listbox when running a VI.
• Programmatically read and write disabled items in a Tree when running a VI.
• Programmatically read and write graph axis names.
• Programmatically read and write column headers of a data grid.

Developing a Web Application

Learn about the different tasks you complete to develop a web application using
LabVIEW NXG Web Module.

• Create a web application—Write a program to run in a web browser.
• Create user interfaces—Design responsive interfaces and customize controls for

your web application.
• Debug WebVIs—Learn about strategies to debug your WebVIs.
• Build a web application—Build and view your application in a web browser
• Link WebVIs in a web application—Link multiple WebVIs to create multiple web

Tip To access examples, on the Learning tab, click Examples » Programming
WebVIs.

LabVIEW NXG Web Module

© National Instruments 5

pages.
• Package a web application—Learn how to configure a package or package installer

for your web application.

Creating a Web Application

Use the web application project template to create an application that can run in a
web browser.

1. In the Projects tab, click Web Application Project, name your project, and click
Create.

A web application project includes the following parts:

2. Web application document (.gcomp)—The container for all the files in your
application.

3. WebVI (.gviweb)—A specialized VI that generates HTML, JavaScript, and CSS
files after you build a web application. Each WebVI marked as top-level in your
application generates one HTML file, which corresponds to one web page after
you build your web application.

4. Other files—(Optional) Any other files you want to include in your web
application, such as CSS, JavaScript, and image files.

5. Web Server target—The item in SystemDesigner that represents the web
server that hosts the web application.

6. Open or create a WebVI within the application document and customize the WebVI
for your unique programming goals.

7. (Optional) If you want to customize the appearance of your WebVI or add
interactive functionality, create CSS and JavaScript files and include them in your
application.

8. Test and debug your code.
Select Run » Run in browser to test your WebVI in a browser.

9. Repeat steps 2–4 to create additional WebVIs.

Note Unlike desktop VIs, WebVIs do not currently support debugging
tools, such as execution highlighting, probes, and breakpoints.

LabVIEW NXG Web Module

6 ni.com

Once you finish creating and testing your application, build it into a web application
that can run in a web browser.

Related tasks:

• Building a Web Application
• Debugging a WebVI

Designing a Responsive User Interface

You can design the user interface of a WebVI to respond to different screen sizes.

Suppose you want your WebVI to run on both a computer monitor and a tablet device;
or you want the WebVI to run on a mobile phone that users expect to scroll only
vertically. Instead of creating a user interface for each use case, you can design a single
user interface that adapts the panel and its contents to the screen size.

1. Create a WebVI within your application document.
2. On the Panel tab, set Panel layout to Flexible.
3. Create containers by placing objects on the panel.

◦ On an empty panel, place a control or indicator anywhere on the panel to
create a container.

◦ Place a control or indicator outside an existing container to create a new
container. You can create multiple containers in a column or in a row.

A container appears as a border when you hover over objects on the panel.
4. Select a container and configure the layout options in the Layout section of the

Item tab to determine how objects in the container arrange and align when the
screen size changes.

5. Select an object and configure the layout options in the Layout section of the Item
tab to set the object size and whether the object resizes when the screen size
changes.

6. Click File » Save all to save all files.
7. Select Run » Run in browser to view your application in a web browser.

Resize the web browser and ensure the controls and indicators resize
appropriately.

To make your web application available to other users, host your build output on a
web server that is accessible to other users.

LabVIEW NXG Web Module

© National Instruments 7

Related tasks:

• Aligning and Arranging Objects in a Responsive User Interface
• Building a Web Application
• Hosting a Web Application on a Server

Aligning and Arranging Objects in a Responsive User Interface

A container groups together controls and indicators and determines their
arrangement on the panel. If the screen size on which you view your application
changes, the objects in a container rearrange according to the layout settings of the
container. Containers exist only on panels whose layout type is flexible.

Before you begin, create a WebVI whose layout type is Flexible.
Select a container and configure the layout options in the Layout section of the Item
tab to determine how objects in the container arrange and align when the screen size
changes.

1. Set the Direction to one of the following options:

Option Description

Row Arranges objects in a single row as the screen
width allows. As the screen width decreases,
objects rearrange into multiple rows.

Column Arranges objects in a single column.

2. Set the Horizontal alignment to one of the following options:

Option Description

Left Aligns objects to the left of the container.

Center Aligns objects to the center of the container.

Right Aligns objects to the right of the container.

Space between Arranges objects with space between the left
and right of objects.

Space around Arranges objects with space before, between,
and after objects.

LabVIEW NXG Web Module

8 ni.com

3. Set the Vertical alignment to one of the following options:

Option Description

Top Aligns objects to the top of the container.

Center Aligns objects to the center of the container.

Bottom Aligns objects to the bottom of the container.

Space between Arranges objects with space between the top
and bottom of objects.

Space around Arranges objects with space above, between,
and, below objects.

Select an object and configure the layout options in the Layout section of the Item tab
to set the object size and whether the object resizes when the screen size changes.

4. Set the Width and Height of the object.
5. Set Flexible resize to one of the following options:

Option Description

Do not resize Does not resize the object.

Resize height and width Resizes the height and width of the object
while maintaining aspect ratio.

Resize width Resizes only the width of the object.

6. Optional: Set Minimum height and Minimum width of the objects. This prevents
the objects from becoming too small to read or use when the screen size
decreases.

7. Click File » Save all to save all files.
8. Select Run » Run in browser to view your application in a web browser.

Resize the web browser and ensure the controls and indicators resize

Note The flexible resize options are not available for all objects, as some
objects have fixed width and/or height. For example, text objects do not
support flexible resize options. You must enable the Auto size property
for text objects to resize to the container or disable the Auto size property
to prevent text objects from resizing.

LabVIEW NXG Web Module

© National Instruments 9

appropriately.

Related tasks:

• Designing a Responsive User Interface

Customizing the Appearance of Controls in a WebVI

Use Cascading Style Sheets (CSS) to customize the appearance of controls in a
WebVI. You can modify properties such as the font, color, shape, or layout of a control.

Before you begin, complete the following:

• Familiarize yourself with CSS on the Mozilla Developer Network
• Open or create a web application project

1. Open the panel of a WebVI and click Edit HTML Source ().
2. In the <head></head> tags, add the following lines of code after the <style

ni-autogenerated-style-id=""></style> tags.
<style>

 selector {

 property 1: value 1;

 property 2: value 2;

 ...

 property n: value n;

 }

</style>

Note If you modify the CSS to customize the appearance of controls, these
modifications may not persist from release to release. If you modify the CSS
from NI defaults, plan to test your code each time you upgrade to a new
version of the G Web Development Software and make manual updates to
your CSS styles if necessary.

LabVIEW NXG Web Module

10 ni.com

https://http//DIGITAL.NI.COM/EXPRESS.NSF/BYCODE/EXMJ34

CSS Item Description

selector
The element you want to customize. You can select an element by its tag name,
ID, class, or attribute. Example: ni-string-control

property:
value

The property of the element that you want to customize and the value you want
to change it to. Example: --ni-control-background-color: orange;

For example, you can use the following code to change the background color of a
string control from the default white to orange.

<style>

 ni-string-control {

 --ni-control-background-color: orange;

 }

</style>

CSS Item Description

ni-string-
control

This selector targets every string control in a WebVI.

--ni-
control-
background-
color:
orange;

This sets the CSS Custom Property named --ni-control-
background-color to the color orange. The --ni-control-
background-color CSS Custom Property targets the background color
of string controls.

3. Click OK and verify your changes.

Search within the programming environment to access the following installed
example:

Customize with CSS

LabVIEW NXG Web Module

© National Instruments 11

Related reference:

• Best Practices for Customizing the Appearance of Controls in a WebVI
• Best Practices for Customizing the Appearance of Controls in a WebVI

Best Practices for Customizing the Appearance of Controls in a WebVI

Use a combination of configuration options in NXG, NI-defined custom properties, and
browser-defined Cascading Style Sheet (CSS) properties to customize the controls in
your WebVI. By following these best practices, you can create, edit, and maintain the
appearance of your controls more easily.

When to Use CSS Properties

Always use configuration options within LabVIEW NXG instead of NI-defined custom
properties or browser-defined CSS properties when configuration options are
available. Refer to the following examples of control configurations with LabVIEW NXG
Web Module:

• If the control supports the Configuration Pane UI to accomplish the same effect.
• If the control supports Property Node configuration to accomplish the same effect.

When Web Module defines custom CSS properties, such as --ni-fill-
background, you should use these over other browser-defined CSS properties
whenever possible. You can use browser-defined CSS properties, such as font or
margin, to format your controls if NXG configuration options are not available.

Styling Guidelines

Use the following guidelines to style your WebVI controls.

Note If you modify the CSS to customize the appearance of controls, these
modifications may not persist from release to release. If you modify the CSS
from NI defaults, plan to test your code each time you upgrade to a new
version of the G Web Development Software and make manual updates to
your CSS styles if necessary.

LabVIEW NXG Web Module

12 ni.com

Goal How to implement

Style the entire page. Select body

Style the panel canvas. Select ni-front-panel

Style a specific control in my WebVI.

Set an HTML class attribute in the IDE and use
that class selector in the CSS:

.your_class_selector {

--ni-true-background: yellow;

--ni-true-foreground-color: #067bc2;

}

Style a group of controls in my WebVI.

Set multiple HTML class attributes in the IDE and
apply the styles to those classes in the CSS:

.activation-progress {

font-weight: bold;

}

.activation-progress.warning {

--ni-fill-background: yellow;

}

.activation-progress.danger {

--ni-fill-background: red;

}

Note To use an HTML class attribute
as a CSS class selector, you must
prefix the class attribute with a period
in the CSS. In the example above, the
HTML class attribute referenced is
your_class_selector. See
W3schools CSS Selectors for more
information.

Note When specifying multiple
HTML class attributes in the IDE, the
list of classes must be space-
delimited. In the example above, the
HTML class attribute for the control is
activation-progress. To make
the control bold and yellow, you

LabVIEW NXG Web Module

© National Instruments 13

https://www.w3schools.com/css/css_selectors.asp

Goal How to implement

For recommendations on how to style specific controls, such as setting border styles
on a button or configuring font styles in text boxes, see the How do I customize a
specific control on my WebVI Panel? section of CSS Frequently Asked Questions.

Related tasks:

• Customizing the Appearance of Controls in a WebVI

Debugging a WebVI

Unlike desktop VIs, WebVIs do not currently support debugging tools, such as
execution highlighting, probes, and breakpoints. However, you can still debug a WebVI
using the following strategies.

Choose between the following debugging options.

Use Case Instructions

You want to see the error output of diagram
objects.

WebVIs support an alternative to automatic error
management that logs unhandled errors to the
Output tab or browser development console.
Because this does not provide the full
capabilities of automatic error management,
make sure you follow the guidelines for
programmatic error management.

would use the HTML class attribute of
activation-progress
warning. Notice the class is not
prefixed with a period and the class
names are separated with a space.

Note To view your error output,
create an error indicator and place it
on the panel.

LabVIEW NXG Web Module

14 ni.com

https://github.com/ni/webvi-examples/tree/master/Guides/CSS

Use Case Instructions

Use this debugging strategy in either of the
following cases.

• You need to debug a subVI in your web
application.

• You want to log error information to the
console of your web browser.

To write log error information to the console of
your web browser or LabVIEW NXG output
window, go to the diagram palette and select
Interoperability » Operating System » Write to
System Log.

To view the information output by Write to
System Log within the editor, on the Navigation
pane, open the Output tab by clicking Tool
Launcher » All » Output.

To view the information output by Write to
System Log in a web browser, use the console of
the web browser development tools.

You need to debug your top-level WebVI. Wire extra indicators at any point in your WebVI
code to imitate probes and display the data that
flows through a wire.

Related tasks:

• Building a Web Application

Related information:

• Error Management

Building a Web Application

Note WebVIs do not currently
support G types as controls or
indicators on the panel. If you create
an indicator from a G type on the
diagram, no corresponding indicator
is available on the panel.

LabVIEW NXG Web Module

© National Instruments 15

https://www.ni.com/labview/latest/g-prog/error-management/

To view your completed web application in a web browser, build your application to
generate HTML, CSS, JavaScript, and other files that are included in your application.

Before you begin, open or create a web application project.

1. On the Project Files tab, double-click the application document to open it.
2. In the application document, enable the Top-level VI checkbox for each WebVI you

want to output as a separate web page.
Each top-level WebVI in an application document generates one HTML file, which
corresponds to one web page.

3. On the Document tab, click Build.
Monitor the status of your build in the Build Queue tab.

4. In SystemDesigner, right-click your application document and select Run to view
your application in a web browser.

To make your web application available to other users, host your build output on a
web server that is accessible to other users.

Related tasks:

• Creating a Web Application
• Hosting a Web Application on a Server

Linking WebVIs in a Web Application

Before you begin, open or create a web application project with multiple top-level
WebVIs. Each WebVI that you mark as top-level outputs as a separate web page.

1. On the Project Files tab, double-click the web application document to open it.
2. In the web application document, select the top-level WebVI you want to link to.

On the Item tab, copy the Relative URL.
3. Open the top-level WebVI you want to link from.
4. Switch to the panel and add a Hyperlink Control.
5. Select the Hyperlink Control. On the Item tab, in the URL field, paste the relative

URL of the WebVI that you want to link to.

You may need to modify the relative URL depending on how your files are

LabVIEW NXG Web Module

16 ni.com

organized. Consider the following file structure.

Application

|

|———One.gviweb

|

|———Two.gviweb

|

|———Namespace_A

| |

| |———Three.gviweb

|

|———Namespace_B

 |

 |———Four.gviweb

 |

 |———Namespace_C

 |

 |———Five.gviweb

Link from Link to Relative URL

One.gviweb Two.gviweb Two.html

One.gviweb Three.gviweb Namespace_A/Three.html

Three.gviweb One.gviweb ../One.html

Three.gviweb Four.gviweb ../Namespace_B/Four.html

Five.gviweb One.gviweb ../../One.html

Five.gviweb Three.gviweb ../../Namespace_A/Three.html

6. Build your application and open the HTML output in a web browser to test the link
you created.

Search within the programming environment to access the following installed
example:

Multiple Top-Level WebVIs

Considerations for Packaging a Web Application

LabVIEW NXG Web Module

© National Instruments 17

Web applications have unique deployment factors and dependencies you need to
know before configuring a package or package installer.

You can package web applications using the same steps as non-web applications.
However, you must deploy web applications to a web server. After you add your web
application to the package, LabVIEW NXG Web Module automatically adds NI Web
Server to the dependencies list. The NI Web Server location is the default root
directory for your web application.

Web Module automatically adds /<web application name> to the end of the file
path when you add a component to the package document in one of the following
ways.

• Right-click the component in the project tree and choose Create Package/Installer
with item.

• Open a distribution document and choose Add Files....

For web applications that use SystemLink APIs, such as Tags and Messages, you must
add those dependencies to the package manually.

Related information:

• Packaging an Application
• Packaging a Library

Communicating Data with a Web Application

Send and receive data from files and web services with your web application.

• Access resource files from a WebVI—Use WebVIs to include CSS, JavaScript, and
other files in your web application.

• Access data from a web service—Learn more about sending requests to and
receiving responses from a web service, including same-origin and cross-origin

Note You can view this file path by opening SystemDesigner in your web
application project and selecting Web Server on the diagram. The file path
appears in the configuration pane on the right under NI Web Server.

LabVIEW NXG Web Module

18 ni.com

https://www.ni.com/docs/bundle/labview-nxg-web-module-feature/page/
https://www.ni.com/docs/bundle/labview-nxg-web-module-feature/page/

requests, and configuring the LabVIEW Web Service for access to your web
application resources.

• Communicate with a web service using a WebVI—Use WebVIs to communicate with
web services, such as SystemLink Tags and Messages, on the same network as your
web application or cloud web services.

Accessing Resource Files from a WebVI

You can include CSS, JavaScript, images, and other types of files in your web
application and access them from a WebVI.

Before you begin, create or open a web application project.

1. In the Project Files tab, right-click the application document file (.gcomp) and
select Import files.

2. Navigate to the file you want to add and click Open.
3. Open the WebVI you want to reference the resource file from, and choose one of

the following options based on file type.

Type of file How to reference the file from your WebVI

CSS
In the <head></head> tags, add the
following lines of code:

<link rel="stylesheet" href="my-

style-sheet.css" />

Refer to the Mozilla Developer Network for

Note For information about including JavaScript files for a JavaScript
Library Interface document, refer to the Integrating a JavaScript File Into a
Web Application help topic.

Note You must save the application document before you can import
files.

LabVIEW NXG Web Module

© National Instruments 19

https://http//DIGITAL.NI.COM/EXPRESS.NSF/BYCODE/EXWB3N

Type of file How to reference the file from your WebVI

more information on using CSS to customize
the appearance of your UI.

JavaScript
In the <head></head> tags, add the
following lines of code:

<script src="my-script.js"></script>

Refer to the Mozilla Developer Network for
more information on using JavaScript to add
custom functionality to your web application.

Image ◦ For images that are hosted externally,
complete the following steps:

a. Switch to the panel and add a URL
Image control to the panel.

b. On the Item tab, enter the path to
your image file in the Source URL
field.

◦ For images on disk, complete the
following steps:

a. Import the image into your
application document file (.gcomp).

b. Switch to the panel and drag the
image from the Project Files tab onto
the Panel.

Related tasks:

• Integrating a JavaScript File Into a Web Application

Retrieving Data From a Web Service

Before you begin, open or create a web application project.

LabVIEW NXG Web Module

20 ni.com

https://http//DIGITAL.NI.COM/EXPRESS.NSF/BYCODE/EXR9D2

What to Use

• GET
• While Loop
• Wait (Milliseconds)
• Case Structure

What to Do

Create the following diagram to retrieve data from a web service and display that data
on the panel.

Customize the gray sections for your unique programming goals.

1

If you want your web application to run continuously in a web browser, place your
code in a While Loop with a False constant wired to the condition terminal.
Otherwise, your web application runs only once in the web browser.

2

Place the code that calls the web service within a Case Structure. The Case
Structure prevents the GET node from making a request to the web service in each
iteration of the While Loop. Making a GET request each time the While Loop iterates
is unnecessary because the data you're accessing probably doesn't change as
quickly as the loop iterates. Most web services also limit how many requests you
can make per second and may even ban your IP address if you make too many
requests.

3
Enter the URL of the web service that you want to call. You can replace this code
with a string constant containing the URL of a web service. You can also create

Tip You can run your web application again by refreshing the page.

LabVIEW NXG Web Module

© National Instruments 21

code that programmatically creates a URL based on user input. In this example,
Minimum Magnitude and Number of Earthquakes to Display determine what
values make up the URL.

4

The GET node sends a request to the web service and returns data from that web
service. In this example, the GET node sends a request to the U.S. Geological
Survey web service and returns the latest earthquake data.

5

Create a subWebVI that parses the data that the web service returns. The web
service in this example returns data in the JSON format, which is what most web
services return. Other common data formats are XML, CSV, and YML. If a web
service returns data in a format other than JSON, you can use other String nodes to
parse that data.

6
To reduce load and improve performance when you run your built web application
on a web browser, add a Wait node to any WebVI that uses an infinite While Loop.

Troubleshooting

If the GET node doesn't return any data or returns unexpected data, verify the
following conditions:

• The URL is correct. Test this by navigating to the URL in a web browser.
• The website or web server you want to access is running. Test this by navigating to

the URL in a web browser.
• You have a working internet connection.

If each of these conditions is true, try one of the following:

• To check the status of an HTTP GET request, wire an indicator to the status
code output of the GET node.

• To check detailed information about the HTTP GET request, including its status,
wire an indicator to the headers output of the GET node.

Refer to the W3C website for more information about HTTP status codes and headers.

Examples

Search within the programming environment to access the following installed
examples:

LabVIEW NXG Web Module

22 ni.com

http://digital.ni.com/express.nsf/bycode/exbs7w

• Call a 3rd Party Web Service
• Call LabVIEW Web Service

Considerations When Accessing Data from Web Services

If you want to create a web application that sends requests to and receives responses
from a web service, you need to know the origin of the web service that hosts the web
application as well as the origin of the target web service.

For example, a web application hosted at http://localhost:8080/Demo/
MyExample.html has the origin http://localhost:8080. A server origin contains three
parts:

Part Definition Example

Scheme Protocol the web service uses. http://

Host Domain name or IP address of the service. localhost

Port TCP port of the web service. If you don't specify a port, the web service uses
the default port. 8080

Once you know the origin of the host web service and the target web service,
determine whether requests from the web application to the target web service will be
same-origin requests or cross-origin requests. If both origins are identical, requests
from the web application to the web service are same-origin requests. If there is any
difference between the two origins, requests from the web application to the web
service are cross-origin requests.

Browsers running web applications do not impose restrictions on same-origin
requests. Web applications that perform cross-origin requests are subject to the
Cross-Origin Resource Sharing (CORS) mechanism. By default, a web browser
blocks all cross-origin requests made to a target web service that is not configured to
support CORS.

Related concepts:

• Types of Cross-Origin HTTP Requests

LabVIEW NXG Web Module

© National Instruments 23

• Configuring CORS for a LabVIEW Web Service
• Hosting a Web Application During Development

Related tasks:

• Enabling CORS for a Web Service
• Sending a Credentialed Cross-Origin HTTP Request

Types of Cross-Origin HTTP Requests

Cross-origin HTTP requests, either simple or non-simple, determine whether the
browser asks the target web service before sending a request.

Simple requests are cross-origin HTTP requests that do not require prior approval
from the target web service before the request can be sent by the browser. An HTTP
request must meet the following criteria to execute as a simple request:

• Use a GET, HEAD, or POST node to make the request.
• Include only CORS-safelisted request-headers in the request.
• Set the Content-Type request header to one of the following values:

◦ application/x-www-form-urlencoded
◦ multipart/form-data
◦ text/plain

Non-simple requests are cross-origin HTTP requests that must get approval from
the target web service to send the actual HTTP request. The web browser sends a
CORS preflight request to the target web service to ask for approval. The response
to the CORS preflight request determines if the web browser can proceed to send the
actual HTTP request. A cross-origin HTTP request executes as a non-simple request if it
violates any of the criteria for a simple request.

CORS also enables credentialed requests. Credentialed requests may use HTTP
cookies and HTTP Authentication headers, or allow TLS client certificates. By default,
browsers do not include credentials with a cross-origin HTTP request. However, you
can use the Configure CORS node in a WebVI to include credentials with a cross-origin
request. The Configure CORS node has no effect on same-origin HTTP requests.

LabVIEW NXG Web Module

24 ni.com

https://developer.mozilla.org/en-us/docs/web/http/access_control_cors#simple_requests

Related concepts:

• Considerations When Accessing Data from Web Services

Related tasks:

• Hosting a Web Application on the NI Application Web Server

Enabling CORS for a Web Service

To incorporate resources from a different origin into your web application, configure
CORS for the server hosting those resources.

1. Refer to the web service documentation or contact the web service administrator
to verify if the web service allows cross-origin requests using CORS.

2. Determine whether the web service requires credentialed CORS requests.
If the web service requires credentialed requests, refer to Sending a
Credentialed Cross-Origin HTTP Request to configure your application to
send credentialed requests.

3. Ensure the web service administrator includes an Access-Control-Allow-
Origin header in HTTP responses to enable cross-origin HTTP requests to the
web service.

◦ For non-credentialed simple CORS requests, set the Access-Control-
Allow-Origin header to one of the following values:

▪ The wildcard value (*) that allows any origin to access a resource. NI
recommends using this value only during the development of your
application.

▪ The origin of the web application performing the HTTP request.

◦ For credentialed simple requests, ensure the web service includes the

Note The target web service must enable cross-origin requests to allow
HTTP requests from a WebVI executing in the development environment.
Refer to Hosting a Web Application During Development for more
information.

LabVIEW NXG Web Module

© National Instruments 25

following header values in responses to the web application:

▪ Access-Control-Allow-Origin header set to the origin of the web
application performing the HTTP request.

▪ Access-Control-Allow-Credentials header set to True.

Refer to the Mozilla Developer Network documentation on HTTP access control for
additional information on advanced CORS configurations, including:

• Responding to a CORS preflight request during a non-simple CORS request
• Handling headers for browser caches
• Accepting additional request headers from a browser
• Allowing the browser to have access to additional response headers

Related concepts:

• Considerations When Accessing Data from Web Services
• Configuring CORS for a LabVIEW Web Service

Related tasks:

• Sending a Credentialed Cross-Origin HTTP Request

Configuring CORS for a LabVIEW Web Service

You may need different CORS configurations for each LabVIEW Web Service in your
application during development and deployment.

To determine the origin of a web application executing in the development
environment, refer to Hosting a Web Application During Development. During
development using a LabVIEW Web Service, configure CORS to test your application in
the LabVIEW editor.

Note The following content only applies to LabVIEW Web Services deployed
to the LabVIEW Application Web Server. NI recommends deploying LabVIEW
Web Services to the NI Web Server instead.

LabVIEW NXG Web Module

26 ni.com

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

LabVIEW Web Services only allows simple cross-origin requests and cannot respond to
CORS preflight requests from a web browser. Use the following table to find the best
CORS configuration for your web application.

Goal CORS Configuration Configuration Instructions

Share your web application
resources publicly and receive
requests from any origin.

• No credentials
• Unfiltered Origins

Configure a LabVIEW Web
Service CORS for Open Access

Allow specific origins you define
or well-known origins to access
your web application resources
that do not require credentials.

• No credentials
• Filtered Origins

Configure a LabVIEW Web
Service CORS for Filtered Access

Allow specific origins you define
or well-known origins to access
your web application resources
and you want to enable sharing
credentials, such as cookies.

• Credentials
• Filtered Origins

Configure a LabVIEW Web
Service CORS for Credentialed
Access

Related concepts:

• Considerations When Accessing Data from Web Services

Related tasks:

• Configure a LabVIEW Web Service CORS for Open Access
• Configure a LabVIEW Web Service CORS for Filtered Access

Note You do not need to enable CORS if your WebVI and LabVIEW Web
Service have the same origin. To achieve this, host the built WebVI in the
Public Content Folder of the LabVIEW Web Service the WebVI is making HTTP
requests to when running your web application.

Note This
configuration is the
least secure. Any
origin could access
your web service.

LabVIEW NXG Web Module

© National Instruments 27

• Configure a LabVIEW Web Service CORS for Credentialed Access

Configure a LabVIEW Web Service CORS for Open Access

Configure CORS to allow any origin access to your WebVI resources.

This CORS configuration is the least secure configuration. Any origin can access your
web service and application resources. For example, any web page the browser visits
could run scripts that make requests to the web service.

What to Use

You can find the Web Services API on the Connectivity palette in LabVIEW.

• LabVIEW Web Service Request
• Set HTTP Header

What to Do

Create the following diagram in a Web Resources VI to configure a LabVIEW Web
Service to allow CORS from any origin.

A new Web Resources VI automatically adds the
LabVIEW Web Service Request class to the block

Note The following content only applies to LabVIEW Web Services deployed
to the LabVIEW Application Web Server. NI recommends deploying LabVIEW
Web Services to the NI Web Server instead.

Note LabVIEW NXG does not support creating web services.

LabVIEW NXG Web Module

28 ni.com

diagram and terminal pane.

Set HTTP Header sets the HTTP header value in
response to a request.

Use the headerAccess-Control-Allow-
Origin to indicate if the origin making the
request can access the response of your Web
Service VI.

Use wildcard (*) as the header value to
allow any origin to access your WebVI resource.

Troubleshooting

If you encounter errors, try the following troubleshooting strategy:

• Verify the header and header value are correct.

Configure a LabVIEW Web Service CORS for Filtered Access

Configure CORS to allow specific origins you define or well-known origins access to
your WebVI resources.

What to Use

You can find the Web Services API on the Connectivity palette in LabVIEW.

• LabVIEW Web Service Request
• Read Request Variable
• Set HTTP Header

Note The following content only applies to LabVIEW Web Services deployed
to the LabVIEW Application Web Server. NI recommends deploying LabVIEW
Web Services to the NI Web Server instead.

Note LabVIEW NXG does not support creating web services.

LabVIEW NXG Web Module

© National Instruments 29

What to Do

Create the following diagram in a Web Resources VI to configure a LabVIEW Web
Service to allow CORS with specific or well-known origins.

Customize the gray sections for your unique programming goals.

A new Web Resources VI automatically adds the
LabVIEW Web Service Request class to the block
diagram and terminal pane.

Read Request Variable checks the request for the
variable you define.

To check the origin of the request, enter
Origin for the value of variable.

Use a Case Structure to create two cases: a case
to continue if an origin is found in the request
and a case to do nothing if an origin is not found
in the request.

Define how to filter the origins you want to
access your web resources. Some common

Note Web browsers in a same-origin
configuration and HTTP clients
outside of web browsers may not
have an Origin header in the
request. These should be handled by
the web resource.

LabVIEW NXG Web Module

30 ni.com

implementations include the following:

• Have a strict list of origins to check against
• Check for a prefix on the origin, such as

http://localhost
• Use the LabVIEW Web Service Request and

Read Request Variable to check for
additional information, such as Remote
Address

Use a Case Structure to create two cases: a case
to continue if the origin passes the filter you
implement and a case to do nothing if the origin
does not pass the filter.

Set HTTP Header sets the HTTP header value in
response to a request.

Use the headerAccess-Control-Allow-
Origin to indicate if the origin making the
request can access the response of your Web
Service VI.

The header value populates with the origin
the filter approves.

Troubleshooting

If you encounter errors, try the following troubleshooting strategies:

• Check the implementation of your filter for errors.
• Verify the header is correct.

Configure a LabVIEW Web Service CORS for Credentialed Access

Configure CORS to allow specific origins you define, well-known origins, and origins
with credentials access to your WebVI resources.

LabVIEW NXG Web Module

© National Instruments 31

What to Use

You can find the Web Services API on the Connectivity palette in LabVIEW.

• LabVIEW Web Service Request
• Read Request Variable
• Set HTTP Header

What to Do

Create the following diagram in a Web Resources VI to configure a LabVIEW Web
Service to allow CORS with specific or well-known origins and origins with credentials.

Customize the gray sections for your unique programming goals.

A new Web Resources VI automatically adds the
LabVIEW Web Service Request class to the block
diagram and terminal pane.

Read Request Variable checks the request for the
variable you define.

To check the origin of the request, enter
Origin for the value of variable.

Note The following content only applies to LabVIEW Web Services deployed
to the LabVIEW Application Web Server. NI recommends deploying LabVIEW
Web Services to the NI Web Server instead.

Note LabVIEW NXG does not support creating web services.

LabVIEW NXG Web Module

32 ni.com

Use a Case Structure to create two cases: a case
to continue if an origin is found in the request
and a case to do nothing if an origin is not found
in the request.

Define how to filter the origins you want to
access your web resources. Some common
implementations include the following:

• Have a strict list of origins to check against
• Check for a prefix on the origin, such as

http://localhost
• Use the LabVIEW Web Service Request and

Read Request Variable to check for
additional information, such as Remote
Address

Use a Case Structure to create two cases: a case
continue if the origin passes the filter you
implement and a case to do nothing if the origin
does not pass the filter.

Set HTTP Header sets the HTTP header value in
response to a request.

Use the headerAccess-Control-Allow-
Origin to indicate if the origin making the
request can access the response of your Web
Service VI.

The header value populates with the origin
the filter approves.

Note Web browsers in a same-origin
configuration and HTTP clients
outside of web browsers may not
have an Origin header in the
request. These should be handled by
the web resource.

LabVIEW NXG Web Module

© National Instruments 33

Set HTTP Header sets the HTTP header value in
response to a request.

Use the headerAccess-Control-Allow-
Credentials to indicate if the origin making
the request can access the response of your Web
Service VI and accept credentialed information,
such as cookies.

Use the header valuetrue to allow the
filtered origin to access your Web Service VI.

You must make a corresponding change in the
Configure CORS node in your WebVI. See
Sending a Credentialed Cross-Origin HTTP
Request for more information.

Add code that only functions if the origin has
supported credentials defined in the request.

The code above uses session VIs that require
browser cookies to function.

Troubleshooting

If you encounter errors, try the following troubleshooting strategies:

• Check the implementation of your filter for errors.
• Verify the header is correct for each Set HTTP Header.
• Check the implementation of the Configure CORS node in your WebVI.

Related tasks:

Note The wildcard (*) value is not
valid for credentialed cross-origin
requests. You must choose a filtered
origin.

LabVIEW NXG Web Module

34 ni.com

• Sending a Credentialed Cross-Origin HTTP Request

Sending a Credentialed Cross-Origin HTTP Request

Enable credentials in your WebVI, such as including and storing HTTP cookies, adding
HTTP Authorization headers, or permitting TLS client certificates to interact with a web
service.

In addition to configuring a web service to support cross-origin credentialed requests,
configure the client handle to include credentials during a CORS requests.

What to Use

• Configure CORS
• Open HTTP Handle
• Close HTTP Handle

What to Do

Create the following diagram to send a credentialed cross-origin HTTP request.

Customize the gray sections for your unique programming goals.

1 Open HTTP Handle creates a client handle that

Note Same-origin requests do not have to perform CORS configuration on
the client handle of a WebVI to include credentials in a request. During a
same-origin request the result of using the Configure CORS node is ignored.

LabVIEW NXG Web Module

© National Instruments 35

https://www.ni.com/docs/csh?topicname=configure-cors.html

preserves the headers you want to add to HTTP
requests the application sends.

2

Configure CORS adds configuration information,
such as whether credentials should be included
in CORS requests, to the client handle.

3
Configure the HTTP node to access resources for
your application.

4

Close HTTP Handle closes the client handle and
deletes any authentication credentials and
HTTP headers associated with the handle.

Troubleshooting

Some servers may require that your application not include credentials with a cross-
origin HTTP request. If the server you send requests to responds with the Access-
Control-Allow-Origin header set to *, the wildcard value, the HTTP request
fails with a CORS configuration error. To resolve the error, set the include
credentials during CORS input of Configure CORS to False. To enable
credentialed access for a LabVIEW Web Service, see Configure a LabVIEW Web Service
CORS for Credentialed Access.

Related concepts:

• Considerations When Accessing Data from Web Services
• Configuring CORS for a LabVIEW Web Service

Communicating Data with Web Services Using WebVIs

Note The browser cache
independently stores and manages
cookies a credentialed CORS request
or same-origin request creates.
Closing the client handle does not
affect the cookies in the browser
cache.

LabVIEW NXG Web Module

36 ni.com

You can communicate with web services on the same network and cloud web services
using LabVIEW NXG WebVIs.

Use the following tables to choose the best communication option for your needs.

Table 1. Communicating with Web Services on the Same Network

Goal Web service to use How to implement

Track a piece of data, such as a
hardware measurement. Tags Service Transferring Data Using Tags

Send commands, status
updates, and data between web
applications and servers.

Messages Service Sending Messages Between
Systems

Share waveform data stored in
a TDMS file. TDM Reader API Service Reading Measurement Data

from TDMS Files

Host a WebVI to make it
accessible from web browsers. NI Web Server Hosting a Web Application on

the NI Web Server

Create a custom HTTP REST API
to interface with an existing
system, such as a database.

LabVIEW Web Service

Creating and Accessing a
LabVIEW Web Service

Configuring CORS for a LabVIEW
Web Service

Hosting a Web Application on
the LabVIEW Application Web
Server

Stream data with low latency.

3rd party WebSocket service

WebSocket G APIs

Note Download the
latest LabVIEW Help
for the most up-to-
date content.

Note LabVIEW and
LabVIEW NXG do not
support listening for
WebSocket
connections at this

LabVIEW NXG Web Module

© National Instruments 37

http://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/build_web_service/
http://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/build_web_service/

Goal Web service to use How to implement

Table 2. Communicating with Cloud Web Services

Goal Web service to use How to implement

Share tags and messages
securely over the internet.

SystemLink Cloud Tags and
Messages

Connecting to SystemLink
Cloud from LabVIEW NXG Web
Module

Sharing Data Across Systems

Host a WebVI securely on the
internet.

SystemLink Cloud
Visualizations

Hosting a Web Application on
SystemLink Cloud

Make local tags and messages
available securely on the
internet.

SystemLink Cloud Connector Connecting to SystemLink
Cloud

Related concepts:

• Considerations When Accessing Data from Web Services

Related tasks:

• Retrieving Data From a Web Service
• Hosting a Web Application on a Server

Using JavaScript with a Web Application

Call JavaScript functions in your web application and use JavaScript to create UI
elements.

• Calling JavaScript functions in your web application—Use a JavaScript Library
Interface (JSLI) to create entry points to JavaScript functions in your web
application.

• Creating UI Elements with JavaScript—Create UI elements to place on the panel of

time.

LabVIEW NXG Web Module

38 ni.com

your web application using the Placeholder HTML Container and JavaScript
Library Interface document (JSLI).

• JavaScript Resources—Research JavaScript concepts using NI-recommended
resources.

Calling JavaScript Functions in a Web Application

Use a JavaScript Library Interface (JSLI) to call globally accessible JavaScript functions
in your web application.

A JSLI is a document in which you create entry points, or defined calls, to JavaScript
functions.

When you create a new entry point, a visual representation of the entry point appears
on the software palette of the diagram. You can place and wire entry points like nodes.

As the web application executes, the entry point calls the JavaScript function. Input
data passes from the diagram to the JavaScript function, and output data returns from
the JavaScript function to the diagram.

Complete the following tasks to call JavaScript functions in your web application:

1. Prepare your code(Optional)—Create wrapper code for the JavaScript file you want
to use.

2. Create a JSLI—Define the JavaScript functions you want to call in your web
application.

3. Integrate the JavaScript file into your web application—Connect the JavaScript file
to your web application and create calls to the JavaScript functions you defined in
the JSLI.

4. Call an asynchronous JavaScript function(Optional)—Add code to your JavaScript
file to use asynchronous JavaScript calls in your WebVI.

Examples

Search within the programming environment to access the following installed
example:

• Call JavaScript From a WebVI

LabVIEW NXG Web Module

© National Instruments 39

https://www.ni.com/docs/csh?topicname=prepare-your-js-code.html
https://www.ni.com/docs/csh?topicname=define-calls-using-jsli.html
https://www.ni.com/docs/csh?topicname=integrate-js-library.html
https://www.ni.com/docs/csh?topicname=create-async-js-calls.html

After you create a JSLI and add entry points to your web application, if necessary,
troubleshoot common issues with a JSLI.

Preparing Your Code For Use With a JavaScript Library Interface

Create wrapper code, if necessary, to make your JavaScript functions compatible with
the JavaScript Library Interface (JSLI).

Before you begin, create a web application and acquire a JavaScript library or find a
global, built-in browser function you want to use. For more information on JavaScript
concepts, refer to JavaScript Resources.

1. Determine if you need to create wrapper code.
When calling JavaScript functions in your web application, you may need to create
wrapper code to make your JavaScript code compatible with the JSLI. The
following table contains common examples of when to create wrapper code and
descriptions of the wrapper code to create.

Situation Solution

You need to call functions that use or return
unsupported data types. JSLIs currently
support the following data types:

◦ booleans
◦ strings
◦ numerics

▪ 8-bit signed integer
▪ 16-bit signed integer
▪ 32-bit signed integer
▪ 8-bit unsigned integer
▪ 16-bit unsigned integer
▪ 32-bit unsigned integer
▪ Single-precision, floating-point

numeric
▪ Double-precision, floating-point

numeric
◦ JavaScript references
◦ 1D array of numerics (represented as a

TypedArray)

Create wrapper functions that convert
between unsupported JavaScript types and
types supported by the JSLI.

LabVIEW NXG Web Module

40 ni.com

https://www.ni.com/docs/csh?topicname=debugging-jsli.html
https://www.ni.com/docs/csh?topicname=js-resources.html

Situation Solution

◦ 1D array of JavaScript references
(represented as Array of JavaScript
values)

You need to use the new operator to create an
instance of an object or you need to invoke a
method on an instance of an object.

Complete the following steps:
a. Create a wrapper function that invokes

the new operator and stores a reference
to the new object instance.

b. Create a wrapper function that looks up
the reference to that object and invokes a
method.

2. Create wrapper code for your JavaScript library. NI recommends you create one
JavaScript file per JSLI document that contains all the wrapper functions you
create.

Model the following code as a best practice for creating wrapper code. Customize
the following code for your unique programming goals.

 /*1*/

(function () {

 'use strict'; /*2*/

 var counter = 1; /*3*/

 /*4*/

 var logWithCount = function (message){

 console.log(counter + ' > ' + message); /*5*/

 return counter++; /*6*/

 };

 window.logWithCount = logWithCount; /*7*/

}());

1

Wrap the contents of the entire wrapper JavaScript file in an immediately
invoked function expression (IIFE). The IIFE creates a new lexical scope
which prevents you from unintentionally adding objects to the global scope.

2
Configure the IIFE to use JavaScript strict mode. Strict mode improves error
handling and allows browsers to make certain optimizations.

LabVIEW NXG Web Module

© National Instruments 41

3

Create a private variable by declaring it within the IIFE. In this example, the
private variable is named counter. Because this variable is private, it
cannot be unintentionally modified by other code. This variable is not
accessible to the JSLI because you did not add it to the global scope.

4

Create a new function and add the desired parameters to the function. In
this example, we create a function named logWithCount that passes a
parameter to a built-in browser function named console.log.

5
Call the function you are wrapping, in this example, the console.log
function.

6

Return a value from your wrapper function. If you configure the return
parameter in the JSLI document to be of a type other than void, you must
pass a return value of the type you configured in the JSLI document to the
return statement.

7

Add the function you want to call in your web application to the global
scope to allow the JSLI document to access the function. In this example,
we use the logWithCount function. In a web browser, the name of the
global object is window, so the code window.logWithCount =
logWithCount; places logWithCount on the global scope.

Related tasks:

• Defining Calls to JavaScript Functions using a JavaScript Library Interface

Defining Calls to JavaScript Functions using a JavaScript Library Interface

To call JavaScript functions in your web application, define calls to the JavaScript
functions using a JavaScript Library Interface (JSLI) document.

Before you begin, create or open a web application project and prepare your
JavaScript code for use with the JSLI. For more information on JavaScript concepts,
refer to JavaScript Resources.

To create and configure a JSLI document, complete the following steps:

Note For the JSLI to access a JavaScript function, the function must be
accessible from the global scope.

LabVIEW NXG Web Module

42 ni.com

https://www.ni.com/docs/csh?topicname=prepare-your-js-code.html
https://www.ni.com/docs/csh?topicname=prepare-your-js-code.html
https://www.ni.com/docs/csh?topicname=js-resources.html

1. On the Project Files tab, add a JSLI to a web application component or library
component in your project.
A JSLI document appears in your web application.

2. Define the prototype for the JavaScript function you want to call. A defined call to
a JavaScript function in a JSLI is called an entry point.
a. In the JavaScript global form field, enter the name of the JavaScript function

you want to call. The name you enter must exactly match the function name in
the JavaScript code. You must specify all functions relative to the global scope.
Use dot notation to refer to nested objects. For example, if you want to call the
absolute function abs in the object Math, you must specify Math.abs in the
JavaScript global form field.

b. Click Add function to create an entry point. The default entry point name is
created from the JavaScript global.

c. Click Add parameter.
d. On the Item tab, specify the parameter name, data type, and JavaScript

representation.
Consider the following information when you add parameters to your
prototype:
▪ You can choose any name for the parameters you add to a JSLI document,

but you must add them in the same order as they appear in the JavaScript
function.

▪ The parameter and return data types you specify in the JSLI document
must match the parameter and return data types in the JavaScript
function.

▪ The parameter in the top position in the JSLI document is always the
return type.

3. Repeat step 2 to create as many entry points as you need for your project.

Related tasks:

• Waiting for Asynchronous JavaScript Operations to Complete in a Web Application
• Debugging JavaScript Library Interfaces

Integrating a JavaScript File Into a Web Application

Note The JavaScript global form field is case sensitive.

LabVIEW NXG Web Module

© National Instruments 43

Connect a JavaScript file to your web application and call functions you defined in a
JavaScript Library Interface (JSLI) in your web application.

Before you begin, create and configure a JLI.

1. Import the JavaScript file(s) you want to use into your web application.
a. Save your project.
b. On the Project Files tab, right-click a web application document or library

component document (.gcomp) and select Import files.
c. Navigate to the JavaScript file(s) you want to add and click Open. Click Copy to

close the Copy existing file(s) dialog box.
2. Integrate the JavaScript file into your web application.

a. Open the JSLI document associated with the JavaScript file and enter the
relative path to the JavaScript file in the HTML script and link dependencies
form field.
Example:
<script src="library.js"></script>

b. Click Apply Changes.
3. Add the entry points you defined in the JSLI to any web application in your project.

a. Open the WebVI in which you want to call the JavaScript function.
b. On the diagram palette, click Project Items » Software » <YourWebAppName>.

Click the folder with the name of your JSLI document to show each entry point
you defined in that JSLI.

c. Drop the entry points you want to use on the diagram.
d. Wire the entry points and complete the diagram.
e. Run the WebVI. Input data passes from the diagram to the JavaScript code, and

output data returns from the JavaScript code to the diagram.

Waiting for Asynchronous JavaScript Operations to Complete in a Web
Application

Use asynchronous JavaScript code to wait on tasks or requests while the rest of the

Note The JavaScript file must be in the same component as the JSLI
document and must be marked as Always include in the component
document.

LabVIEW NXG Web Module

44 ni.com

https://www.ni.com/docs/csh?topicname=define-calls-using-jsli.html

code in your WebVI continues to execute.

Synchronous code means that your code executes in order. Asynchronous code means
that a portion of your code waits for a task to complete while the rest of your code
continues to execute. For more information on JavaScript concepts, refer to JavaScript
Resources.

What to Use

• External JavaScript file
• JavaScript Library Interface (JSLI) document

What to Do

1. Create the following code in a JavaScript (.js) file to use an asynchronous
JavaScript function in your web application to run two loops in parallel. Customize
the following code for your unique programming goals.

(function () {

 'use strict';

 /*1*/

 const synchronousDivide = function (numerator, denominator) {

 if (denominator === 0) {

 throw new Error('Cannot divide by zero');

 } else {

 return numerator / denominator;

 }

 };

 const sleep = function (time) {

 return new Promise(function (resolve) {

 setTimeout(resolve, time);

 });

 };

 /*2*/

 const asynchronousDivide = async function (numerator, denominator) {

 await sleep(1000); /*3*/

 /*4*/

LabVIEW NXG Web Module

© National Instruments 45

https://www.ni.com/docs/csh?topicname=js-resources.html
https://www.ni.com/docs/csh?topicname=js-resources.html

 if (denominator === 0) {

 throw new Error('Cannot divide by zero');

 } else {

 return numerator / denominator;

 }

 };

 /*5*/

 window.synchronousDivide = synchronousDivide;

 window.asynchronousDivide = asynchronousDivide;

}());

1

Create a JavaScript function that completes
synchronously named
synchronousDivide.

2

Create an async JavaScript function named
asynchronousDivide.

An async JavaScript function results in a
JavaScript Promise that notifies G Web
Development Software that the function will
run asynchronously.

3

Add code that runs asynchronously. This
example uses the sleep function which
asynchronously pauses execution for 1000
milliseconds.

Note To notify G Web
Development Software that a
JavaScript error has occurred in a
synchronous function, you must
throw an error in your JavaScript
code. In your diagram code, the
error out output on the JSLI
node returns an error.

LabVIEW NXG Web Module

46 ni.com

4

Return a value or throw an error from the
async function. When using an async
JavaScript function for asynchronous
programming, returning a value or throwing
an error uses syntax similar to synchronous
programming.

5

Add the functions you want to call in your web
application to the global scope to make the
functions accessible to the JSLI document. In
this example, we place both the
synchronousDivide and
asynchronousDivide functions on the
global scope.

2. Create and configure a JSLI document.
3. Integrate the JavaScript file into your web application.

4. Create the following diagram to use the asynchronous JavaScript function to
execute two loops in parallel in your WebVI.

LabVIEW NXG Web Module

© National Instruments 47

https://www.ni.com/docs/csh?topicname=define-calls-using-jsli.html
https://www.ni.com/docs/csh?topicname=integrate-js-library.html

1
Run the WebVI. The Sync Divide JSLI node
executes continuously without waiting.

2

The Async Divide JSLI node waits 1000
milliseconds before continuing execution.

Because the asynchronousDivide
function executes asynchronously in your
JavaScript code, the second loop doesn't
block execution of the first loop. The Async
Divide JSLI node behaves synchronously in
your diagram code, so you do not need to wait
on the asynchronously executing JavaScript
code manually in your diagram code.

Related tasks:

• Defining Calls to JavaScript Functions using a JavaScript Library Interface
• Integrating a JavaScript File Into a Web Application
• Debugging JavaScript Library Interfaces

Debugging JavaScript Library Interfaces

Solve common problems that may occur when configuring and using JavaScript
Library Interfaces (JSLIs).

Use the following table to resolve common errors.

Issue Solution

You receive a Function not found error. Verify the JSLI uses the correct spelling and case

Note Most errors occur due to mismatches between the JSLI configuration
and the functions in the JavaScript library. Mismatch errors may not occur at
the exact time the JavaScript function call executes on the diagram.

LabVIEW NXG Web Module

48 ni.com

Issue Solution

sensitivity for the entry points you defined.

The JSLI node does not appear in the software
palette on the diagram.

Check both of the following items.

• On the Project Files tab, the JSLI document
is in a web application document.

• On the Project Files tab, double-click the
web application document. Ensure the
Select target drop-down box is set to Web
Server.

The changes you make to the HTML source panel
do not take affect. Verify your HTML is valid.

You do not get the results you expected from
your entry point.

Verify that the parameters are in the correct
order in the JSLI document.

Your function does not appear to be called.

Add temporary calls to console.log('my
custom message') to your JavaScript code
to print a custom message to the console when
it is called.

Creating UI Elements with JavaScript

Create UI elements to place on the panel of your web application using the
Placeholder HTML Container and JavaScript Library Interface document (JSLI).

You can add custom UI elements, such as controls, to your web application by creating
a placeholder on the panel. Using the placeholder, you can set the dimensions and
other properties of the element that work for both flexible and absolute layouts. You
then create a control reference and wire the reference into a JSLI, directly exposing the
underlying HTML for the control to your JavaScript code.

Note To view messages printed to
the console, see Debugging a WebVI.

LabVIEW NXG Web Module

© National Instruments 49

Before you begin, create or open a web application.

What to Use

• Placeholder HTML Container
• Obtain JavaScript Reference

What to Do

1. Open or create a JSLI and add the JavaScript function you want to call from your
web application. Add the parameters with one input having a data type of JS
Reference.

In the following example, the JavaScript function is Reflect.set, a function
available in most browsers, with the name Property Set. In addition to the
JavaScript Reference input, there are two additional inputs for the function.

2. Open or create a WebVI (.gviweb) and on the panel, select Decorations »
Placeholder HTML Container and place it on the panel.

3. Use the Configuration pane on the right to configure the container.

The container is empty by default and you can populate it with a control at

Note In order to directly access your HTML element, your function must
have an input with a matching data type of JS Reference. You can also
include an array of JS references.

Note You can rename the function and properties, however the
JavaScript Global function name must be the name of the function you
are referencing.

Note Use the Configuration pane or property nodes to configure the
HTML container instead of injecting HTML to configure the placement
and sizing.

LabVIEW NXG Web Module

50 ni.com

runtime. If you use the Configuration pane to add a placeholder image, the
placeholder image is visible in the container at edit time. Select Image visible at
runtime to make the placeholder image also visible at runtime until the contents
of the container are available.

4. With the HTML Container selected, click Create reference in the Configuration
pane.

The HTML Container does not have a terminal, so you must create a reference to
interact with it on the diagram.

5. Create the following diagram to populate the HTML container on the panel with
the JavaScript function you defined in the JSLI.

Customize the gray sections for your unique programming goals.

1

The Static Control Reference represents the HTML Container you
placed on the panel.

Obtain JavaScript Reference creates a JavaScript reference with a
value of the HTML element within the container.

2 If you want your web application to run continuously in a web

Tip You can wire the HTML container to a property node
to configure the size and position of your control.

Note The references do not have controls and are only
visible on the diagram. You can wire references to
terminals on a connector pane.

LabVIEW NXG Web Module

© National Instruments 51

browser until it encounters an error, place your code in a While Loop
with the conditional terminal wired to the error out parameter of
your JavaScript function.

In this example, the Property Set JavaScript function is wired to the
conditional terminal. If Property Set returns an error, the conditional
terminal will stop the loop from executing.

3

The JavaScript function uses the JavaScript reference from Obtain
JavaScript reference. You can configure the function using the
properties you defined in the JSLI document along with any other
supporting code.

In this example, the Property Set function outputs the number of
loop iterations by converting the iteration counter output into a
string using the HTML tag.

4

To reduce loading time and improve performance when you run your
built web application on a web browser, add a Wait node to any
WebVI that uses an infinite While Loop.

Troubleshooting

Ensure you properly define the JavaScript calls you make in the JSLI. Refer to the
following resources for more information.

• Defining Calls to JavaScript Functions using a JavaScript Library Interface
• JavaScript Resources

Related concepts:

• Considerations When Creating UI Elements with JavaScript
• JavaScript Reference Functionality

Considerations When Creating UI Elements with JavaScript

JavaScript UI elements may require special sizing considerations to ensure they
appear correctly after you deploy your web application or share the UI element in a

LabVIEW NXG Web Module

52 ni.com

library.

The size of the UI element you create can change if your web application has a flexible
layout or if your user configures the element using property nodes. Consider using the
following strategies to ensure the UI element retains the appropriate size to fit in the
Placeholder HTML Container.

• Configure with CSS—Use a style sheet to set the size of the UI element.
• Configure with the ResizeObserver API—Use the browser-based ResizeObserver

API to make adjustments programmatically.

Related concepts:

• Creating UI Elements with JavaScript

JavaScript Reference Functionality

JavaScript references behave similarly to references for other data types, but have
some unique functionality.

When using JavaScript references in your web application, you need to consider the
following:

• Primitive values null and undefined—JavaScript references treat primitive values
null and undefined the same as other primitives, such as strings, booleans,
numbers, etc. If a value of null or undefined is returned, it generates a new
JavaScript reference that you need to clean up to prevent memory leaks.

• Not a Number/Path/Refnum? behavior—The node tells you if the value is valid, but
it does not tell you if the JavaScript reference value is null or undefined. There is
not an existing node to check for values of null or undefined.

• JavaScript values—JavaScript references can hold any JavaScript value, including
primitives and objects, such as JavaScript functions, HTML elements, and class

Note The ResizeObserver API is supported in most browsers. Ensure
your browser supports this API before implementing it in your code. Refer
to the Mozilla Developer Network documentation for more information
about the ResizeObserver API.

LabVIEW NXG Web Module

© National Instruments 53

https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/WEB/API/RESIZEOBSERVER

instances.
• Type definitions containing a JavaScript reference—JavaScript references do not

have front panel representations, so you will need to use the following process to
create a type definition containing a JavaScript reference:
1. Create a VI (.gvi) with a web server target in your web application project.
2. Add your JavaScript reference to the diagram.
3. In the Configuration pane, click Change to Type Definition.

Related concepts:

• Creating UI Elements with JavaScript

JavaScript Resources

Research JavaScript concepts using NI-recommended resources.

The items are some concepts you may want to research when using JavaScript Library
Interfaces (JSLIs) and calling JavaScript functions in your web application. Each item
links to the appropriate Mozilla Developer Network (MDN) documentation resource. If
the JavaScript concept you want to learn about is not listed, NI recommends you
search the MDN JavaScript documentation.

• Asynchronous JavaScript
• Built-in Objects
• Callback Function
• Global Scope
• Immediately Invoked Function Expression (IIFE)
• Objects
• Strict Mode
• TypedArray Object

Hosting a Web Application on a Server

To make your web application available to other users, host your build output on a
web server that is accessible to other users.

LabVIEW NXG Web Module

54 ni.com

https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/WEB/JAVASCRIPT
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/GLOSSARY/ASYNCHRONOUS
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/WEB/JAVASCRIPT/REFERENCE/GLOBAL_OBJECTS
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/GLOSSARY/CALLBACK_FUNCTION
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/GLOSSARY/GLOBAL_SCOPE
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/GLOSSARY/IIFE
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/WEB/JAVASCRIPT/GUIDE/WORKING_WITH_OBJECTS
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/WEB/JAVASCRIPT/REFERENCE/STRICT_MODE
https://https//DEVELOPER.MOZILLA.ORG/EN-US/DOCS/WEB/JAVASCRIPT/REFERENCE/GLOBAL_OBJECTS/TYPEDARRAY

You can host your web application on any server you choose. This includes local
servers and servers in the cloud. Use the following table to choose and set up a server
for hosting your web application.

Options for Hosting a Web Application

Required Products Hosting Option Use Case Hosting Instructions

G Web Development
Software or NI
SystemLink

NI Web Server

You want to
manage your own
server from within
your network,
either through G
Web Development
Software or NI
SystemLink.

NI SystemLink and the
G Web Development
Software both use the
NI Web Server. Follow
the instructions for
Hosting a Web
Application on the NI
Web Server.

SystemLink Cloud SystemLink Cloud Server

Choose this server
in either of the
following cases:

• You want to
access your
web
application
from the
SystemLink
Cloud
website and
on mobile
devices
without
sacrificing
security.

• You want to
avoid placing
the server
burden on
your
measurement
hardware,

Follow the instructions
for Hosting a Web
Application on
SystemLink Cloud.

LabVIEW NXG Web Module

© National Instruments 55

https://www.ni.com/docs/csh?topicname=hosting-ni-web-server.html
https://www.ni.com/docs/csh?topicname=hosting-ni-web-server.html
https://www.ni.com/docs/csh?topicname=hosting-ni-web-server.html

Required Products Hosting Option Use Case Hosting Instructions

such as when
using real-
time
hardware.

LabVIEW 2013 or later LabVIEW Application Web
Server

Choose this server
in either of the
following cases:

• You want to
host a web
application
directly on a
LabVIEW real-
time target,
such as a
CompactRIO.

• You want to
use the
security
features
provided by
LabVIEW Web
services.

Follow the instructions
for Hosting a Web
Application on the G
Web Development
Software Web Server.

3rd party software 3rd party server

You need
functionality that
is not included in
the NI server
options.

Before you begin, you
must build a web
application.

Copy your entire web
application build
output to the server
directory. To navigate
to your web
application output on
your machine, click
Locate directory in
Windows Explorer on

LabVIEW NXG Web Module

56 ni.com

https://www.ni.com/docs/csh?topicname=hosting-labview-server.html
https://www.ni.com/docs/csh?topicname=hosting-labview-server.html
https://www.ni.com/docs/csh?topicname=hosting-labview-server.html
https://www.ni.com/docs/csh?topicname=hosting-labview-server.html
https://www.ni.com/docs/csh?topicname=building-a-web-application.html
https://www.ni.com/docs/csh?topicname=building-a-web-application.html

Required Products Hosting Option Use Case Hosting Instructions

the Document tab of
your web application
component document.

Related tasks:

• Building a Web Application

Hosting a Web Application on the NI Web Server

To make your application available to other users, host your build output on a web
server that is accessible to other users.

Before you upload your application or WebVI on NI Web Server, you must complete the
following tasks:

• Remove the URL, username, and password from the panel and the diagram to
maximize the security of your web application. Refer to the Hosting
Authentication Credentials Securely section of Security in NI Web
Technology for more information.

Note You
may need
to configure
a 3rd party
server to
support the
application/
wasm MIME
type for
files with
the .wasm
file
extension.

LabVIEW NXG Web Module

© National Instruments 57

https://www.ni.com/r/slcwebsecurityhlp
https://www.ni.com/r/slcwebsecurityhlp

NI SystemLink and G Web Development Software both use NI Web Server. Complete
the following steps to host your web application on NI Web Server.

1. Open your web application project (.gwebproject), navigate to SystemDesigner,
and open Design view.

2. Select Web Server on the diagram.
In the configuration pane under Item » NI Web Server, you will find the NI Web
Server root directory path. The root directory path populates SystemDesigner
based on your configuration settings in the NI Web Server Configuration Utility.
Here is an example of a root directory path: C:\Program Files\National
Instruments\Shared\Web Server\htdocs\.

3. Copy your entire web application output directory into the web server directory.
To navigate to your web application output on your machine, click Locate item in
Windows Explorer on the Document tab of your web application component
document.

4. Open a web browser and navigate to
http://localhost/WebApp_Web%20Server/Main.html, localhost is the
IP address of the server and Main.html is the file name of the top-level WebVI in
your web application.

Related information:

• Choosing Remote Settings

Hosting a Web Application on the NI Application Web Server

To make your web application available to other users, host your build output on a
web server that is accessible to other users.

Before you begin, you must complete the following tasks.

• Install a version of LabVIEW from 2013 or later.
• Build your web application.

To host your web application on the Application Web Server, choose from the
following options.

LabVIEW NXG Web Module

58 ni.com

https://www.ni.com/ni-web-server/latest/manual/choosing-a-remote-setting/

Option Description

Host your web application on the Application
Web Server through LabVIEW Web Services. a. In your LabVIEW Web Service, create a

public content folder. For more information,
refer to integrating static content into a web
service.

b. Copy your entire web application output
directory into the public content folder you
created.

c. Publish your LabVIEW Web Service.

Manually host your web application files on the
Application Web Server. a. Navigate to the Application web server

document root.

Example if the 32-bit Application Web Server
is enabled: C:\Program Files
(x86)\National Instruments\
Shared\NI WebServer\www

Example if hosting on a CompactRIO:/var/
local/natinst/www

b. Copy your entire web application output
directory into the Application web server
document root.

To navigate to your web application output
on your machine, click Locate directory in
Windows Explorer on the Document tab of
your web application component
document.

c. Open a web browser and navigate to
http://localhost:8080/
WebApp_Web%20Server/Main.html,
where Main.html is the file name of the
top-level WebVI in your web application.

Note Download the latest LabVIEW
Help for the most up-to-date content.

LabVIEW NXG Web Module

© National Instruments 59

https://http//ZONE.NI.COM/REFERENCE/EN-XX/HELP/371361R-01/LVHOWTO/WS_STATIC_CONTENT/
https://http//ZONE.NI.COM/REFERENCE/EN-XX/HELP/371361R-01/LVHOWTO/WS_STATIC_CONTENT/
https://http//ZONE.NI.COM/REFERENCE/EN-XX/HELP/371361R-01/LVCONCEPTS/WS_DISTRIBUTING/

Option Description

Hosting a Web Application During Development

Host WebVIs running in the LabVIEW NXG editor with NI Web Server or the LabVIEW
NXG embedded web server.

NI recommends hosting your WebVI with NI Web Server. NI Web Server helps you avoid
additional configurations when you use other APIs NI Web Server hosts, such as
SystemLink Tags and Messages. Refer to the NI Web Server Manual for more
information.

Use the LabVIEW NXG embedded web server if you are unable to configure NI Web
Server on your development PC. If you choose the embedded web server, you cannot
connect to APIs hosted on the NI Web Server, such as the SystemLink APIs, unless you
configure NI Web Server to support the cross-origin resource sharing (CORS)
mechanism. Refer to Choosing Remote Settings to learn more about enabling CORS for
NI Web Server.

To set your hosting preference in LabVIEW NXG, select File » Preferences » Web Server.

Related concepts:

• Considerations When Accessing Data from Web Services

Note You can update the port in
the URL, if necessary, to match
the Application Web Server HTTP
port.

Note The LabVIEW NXG embedded web server has an origin of
http://localhost:<port>. Your operating system assigns the port based on
availability and varies between instances of the editor. Any HTTP request
made by a WebVI hosted in the editor that does not target a user resource is
considered a cross-origin request.

LabVIEW NXG Web Module

60 ni.com

Hosting a WebVI in SystemLink

Host a WebVI in SystemLink to securely share it with users on the server.

Before hosting a WebVI in SystemLink, create a package (.nipkg) in LabVIEW NXG that
contains the WebVI.

1. In SystemLink Web Application, under Data Visualization, click WebVIs.
2. Click Import.
3. Select the package you want to upload from your local machine.

The WebVI you import must be 20 MB or smaller.
4. Enter a name and optional description for the WebVI.
5. Select the workspace you want to host the WebVI in.
6. Click OK.
7. Click the WebVI to run it.
8. To update an existing WebVI, select the WebVI and click to upload the

updated file.

Users in the workspace you selected who have WebVI permissions can interact with
the WebVI you uploaded.

Using Hardware with a Web Application

Use a web application to share measurement data and interact with hardware.

The following diagrams show three architectures for how to use your hardware with a
web application. Use the diagrams to choose the best architecture for your
application.

Access a Web Application on Your Hardware

Note You can use both real-time and non-real-time hardware devices with
your web application.

LabVIEW NXG Web Module

© National Instruments 61

In this architecture, the web service runs on the hardware itself and the hardware also
stores the web application. This architecture works best for light-weight web
applications, such as browser-based simple configurations and human-machine
interfaces for your hardware.

Access a Web Application on a PC

Note You cannot use SystemLink APIs using this architecture.

LabVIEW NXG Web Module

62 ni.com

In this architecture, the web service runs and web application is stored on a PC on the
same network as your hardware. This architecture keeps the server burden off of your
hardware and works best for sharing measurement data dashboards and applications
using SystemLink Tag and Message APIs.

Access a Web Application on the Cloud

In this architecture, your hardware shares data with the web application hosted in the
cloud. This architecture works best for accessing the web application from a desktop
or mobile device over the internet to securely share your measurement data.

Using a Web Application with a CompactRIO Device

Leverage the following architectures to use your web application with a CompactRIO
device.

• Access a web application on your CompactRIO.
• Access a web application on a PC.
• Access a web application on the cloud.

Use the following table to determine the best architecture for your system and web

LabVIEW NXG Web Module

© National Instruments 63

application.

Architecture Use case How to access How to implement

Access a web
application on your
CompactRIO.

Light-weight web
applications:

• Browser-based
simple
configurations

• Human-
machine
interfaces

Enter the IP address
of your CompactRIO
in a browser on the
same local network
as the device.

• Create and Access a
LabVIEW Web Service
on the CompactRIO.

• Host using the LabVIEW
Application Web Server.

• Configure cross-origin
resource sharing (CORS)
for your LabVIEW Web
Service running on a
CompactRIO while
developing the web
application in the
LabVIEW NXG editor.

Note You
cannot use
SystemLink
APIs using
this
architecture.

Note NI
recommends
disabling
CORS access
to the
LabVIEW
Web Service
when you
complete
development
and deploy
the web
application
to the
CompactRIO.
For more
information
about how to
protect your
web
application
and data,
refer to

LabVIEW NXG Web Module

64 ni.com

http://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/build_web_service/
http://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/build_web_service/

Architecture Use case How to access How to implement

Access a web
application on a PC.

• Measurement
data
dashboards

• Use SystemLink
Tag and
Message APIs

• Avoid putting
the server
burden on your
CompactRIO

Enter the IP address
of the PC in a
browser on the
same local network
as the PC and
CompactRIO.

• Access the data from
your CompactRIO
device using one of the
following options:
◦ Use NI Web Server

Data Services, such
as SystemLink Tag
and Message APIs.

◦ Create and Access a
LabVIEW Web
Service on the PC.

• Host using the NI Web
Server or a third-party
web server.

• Configure cross-origin
resource sharing (CORS)
if your development PC
and hosting PC are
different machines.

Access a web
application on the
cloud.

• Use a desktop
or mobile
device to access
the web
application over
the internet

• Host and
securely share
your
measurement
data with
SystemLink

Enter the URL for the
web application in a
browser connected
to the internet.

• Use SystemLink Cloud
to share data across
systems by directly
connecting your
hardware or make local
tags and messages
available using
SystemLink Cloud
Connector API.

• Host using SystemLink
Cloud Server to take
advantage of the

Security in NI
Web
Technology.

LabVIEW NXG Web Module

© National Instruments 65

https://www.ni.com/en-us/innovations/white-papers/18/security-in-ni-web-technology.html
https://www.ni.com/en-us/innovations/white-papers/18/security-in-ni-web-technology.html
https://www.ni.com/en-us/innovations/white-papers/18/security-in-ni-web-technology.html
https://www.ni.com/docs/bundle/labview-nxg-web-module-feature/page/
https://www.ni.com/docs/bundle/labview-nxg-web-module-feature/page/
http://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/build_web_service/
http://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/build_web_service/
http://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/build_web_service/
https://www.ni.com/docs/bundle/labview-nxg-web-module-feature/page/

Architecture Use case How to access How to implement

Cloud

accessibility and
security of SystemLink.

• Connect to SystemLink
Cloud using an API key.

Building Shareable Libraries

Use your web application library to share reusable code.

You can create an add-on for your web application and distribute it in a package using
the following steps.

1. Create a library—Add all of the source files for your web application to the library.

2. Add a palette to the library—Add a HTML panel palette and all supporting
functions to the web application library.

3. Add custom UI elements to the library—Add a palette with your custom UI
elements to the web application library.

4. Package the library—Build the web application library into a package or package
installer.

Recommendations for Building a Web Application Library

Note Refer to
SystemLink
Cloud FAQ to
learn more about
SystemLink
Cloud
requirements and
features.

Note Ensure you create the library on the web server target.

LabVIEW NXG Web Module

66 ni.com

https://www.systemlinkcloud.com/faq
https://www.systemlinkcloud.com/faq

Consider the following recommendations when building a reusable library for your
web application.

1. Use VIs (.gvi) instead of WebVIs (.gviweb)—Use a WebVI as the top-level VI in your
web application and VIs with the .gvi file extension for all other VIs and libraries.
Using VIs with the .gvi file extension enables you to use your libraries across
targets.

2. Wrap JavaScript Library Interface (JSLI) nodes in VI (.gvi) files and uncheck Export
for JSLI documents—Rather than exporting nodes defined in the JSLI document,
wrap the nodes in VI (.gvi) files and ensure they are not accessible outside of the
library. The wrapper VI isolates the JSLI nodes from the library user, giving you the
flexibility to add functionality, such as supporting additional data types or having
multiple outputs.

3. Put JavaScript resources and JSLI in a support namespace—Use a separate
namespace for JavaScript resources, such as CSS, and JSLI documents to organize
web application specific resources.

If you want to add custom visual elements to your web application library, refer to
Adding a Custom UI Palette to Your Web Application Library.

Adding a Custom UI Palette to Your Web Application Library

Add custom UI elements you created with the Placeholder HTML Container to a palette

LabVIEW NXG Web Module

© National Instruments 67

in your web application library.

Before you create a palette for your custom UI elements, complete the following tasks:

• Enable the preview feature—Navigate to File » Preferences » Preview Features and
in the Web Module section, select Enable Placeholder HTML Containers in WebVI
library palettes to enable this feature. Refer to Preview Features to learn more
about LabVIEW NXG preview features.

• Create UI elements—Use the Placeholder HTML Container and Obtain JavaScript
Reference node to create custom UI elements for your web application.

Use a control definition file to make the custom UI elements you create available in the
palette when someone installs your web application add-on.

1. Create or open a library in your web application project.

2. Create a control definition file and add it to the library.
3. Add your Placeholder HTML Container to the control definition file and configure

how you want it to appear when placed on the front panel.

4. In the library with the control definition file selected, click Create palette file from
the configuration pane.

5. Select G HTML panel palette for the palette type.
6. (Optional) Use the configuration pane to configure your palette.

Tip Make sure this library has an extension of .gcomp and has a Web
Server target.

Note If you use the Image URL option, you cannot use an image file in
the library at deployment. You must use an image URL from the public
internet or a self-contained data URL. If you try to reference an image file
in the library component, it may not resolve in the correct location once
deployed.

© 2025 National Instruments Corporation.

LabVIEW NXG Web Module

68 ni.com

	LabVIEW NXG 5.1 Web Module Manual
	Manuals for Related Products
	LabVIEW NXG Web Module 5.1 New Features and Changes
	New Features

	Developing a Web Application
	Creating a Web Application
	Designing a Responsive User Interface
	Aligning and Arranging Objects in a Responsive User Interface

	Customizing the Appearance of Controls in a WebVI
	Best Practices for Customizing the Appearance of Controls in a WebVI

	Debugging a WebVI
	Building a Web Application
	Linking WebVIs in a Web Application
	Considerations for Packaging a Web Application

	Communicating Data with a Web Application
	Accessing Resource Files from a WebVI
	Retrieving Data From a Web Service
	What to Use
	What to Do
	Troubleshooting
	Examples

	Considerations When Accessing Data from Web Services
	Types of Cross-Origin HTTP Requests
	Enabling CORS for a Web Service
	Configuring CORS for a LabVIEW Web Service
	Configure a LabVIEW Web Service CORS for Open Access
	Configure a LabVIEW Web Service CORS for Filtered Access
	Configure a LabVIEW Web Service CORS for Credentialed Access

	Sending a Credentialed Cross-Origin HTTP Request

	Communicating Data with Web Services Using WebVIs

	Using JavaScript with a Web Application
	Calling JavaScript Functions in a Web Application
	Preparing Your Code For Use With a JavaScript Library Interface
	Defining Calls to JavaScript Functions using a JavaScript Library Interface
	Integrating a JavaScript File Into a Web Application
	Waiting for Asynchronous JavaScript Operations to Complete in a Web Application
	Debugging JavaScript Library Interfaces

	Creating UI Elements with JavaScript
	What to Use
	What to Do
	Troubleshooting
	Considerations When Creating UI Elements with JavaScript
	JavaScript Reference Functionality

	JavaScript Resources

	Hosting a Web Application on a Server
	Options for Hosting a Web Application
	Hosting a Web Application on the NI Web Server
	Hosting a Web Application on the NI Application Web Server
	Hosting a Web Application During Development

	Hosting a WebVI in SystemLink
	Using Hardware with a Web Application
	Access a Web Application on Your Hardware
	Access a Web Application on a PC
	Access a Web Application on the Cloud
	Using a Web Application with a CompactRIO Device

	Building Shareable Libraries
	Recommendations for Building a Web Application Library
	Adding a Custom UI Palette to Your Web Application Library

