NI-5734 Specifications

n

Contents

|--|

NI-5734 Specifications

NI-5734 Specifications

NI-5734 Pinout

Use the pinout to connect to terminals on the NI-5734.

Figure 1. NI-5734 Front Panel Connector Pinout

Table 1. Signal Descriptions

Signal Name	Description
AI 0	50 Ω single-ended analog input channel 0.
AI 1	50 Ω single-ended analog input channel 1.
AI 2	50 Ω single-ended analog input channel 2.
AI 3	50 Ω single-ended analog input channel 3.
CLK IN	Reference or external clock input, 50 Ω single-ended.

Signal Name	Description		
AUX I/O	Refer to the AUX I/O Connector section.		

Caution Connections that exceed the maximum ratings of any connector on the NI-5734 can damage the device and the chassis. NI is not liable for any damage resulting from such signal connections.

AUX I/O Connector

Figure 1. AUX I/O Connector Pinout

Table 2. Signal Descriptions

Pin	Signal Name	Description
1	DIO Port 0 (0)	Bidirectional single-ended digital I/O data channel.
2	GND	Ground reference for signals.
3	DIO Port 0 (1)	Bidirectional single-ended digital I/O data channel.
4	DIO Port 0 (2)	Bidirectional single-ended digital I/O data channel.
5	GND	Ground reference for signals.
6	DIO Port 0 (3)	Bidirectional single-ended digital I/O data channel.
7	DIO Port 1 (0)	Bidirectional single-ended digital I/O data

Pin	Signal Name	Description		
		channel.		
8	GND	Ground reference for signals.		
9	DIO Port 1 (1)	Bidirectional single-ended digital I/O data channel.		
10	DIO Port 1 (2)	Bidirectional single-ended digital I/O data channel.		
11	GND	Ground reference for signals.		
12	DIO Port 1 (3)	Bidirectional single-ended digital I/O data channel.		
13	PFI 0	Bidirectional single-ended digital I/O data channel.		
14	NC	No connect.		
15	PFI 1	Bidirectional single-ended digital I/O data channel.		
16	PFI 2	Bidirectional single-ended digital I/O data channel.		
17	GND	Ground reference for signals.		
18	+5V	+5 V power (10 mA maximum).		
19	PFI 3	Bidirectional single-ended digital I/O data channel.		

Caution The AUX I/O connector accepts a standard, third-party HDMI cable, but the AUX I/O port is not an HDMI interface. Do not connect the AUX I/O port on the NI-5734 into the HDMI port of another device. NI is not liable for any damage resulting from such signal connections.

Analog Input (AI 0, AI 1, AI 2, and AI 3)

General Characteristics

Number of channels	Four

Connector type	BNC
Input type	Simultaneously sampled, singled-ended
Input impedance	50 Ω, per connector
Input coupling (software selectable)	AC or DC
Gain (software selectable)	0 dB, 6 dB, or 12 dB
Signal paths (software selectable)	Filter bypass, 7th-order Elliptic filter, 7th- order Bessel filter
Digital data resolution (16-bit, left-justified, unsigned, binary data)	16 bit
ADC part number ¹	AD9268BCPZ-125
Absolute maximum voltage	±10 V DC, 10 V _{pk-pk} AC
DC overvoltage disconnect	±2 V DC (exceeding this voltage forces AC- mode)

1. For additional information about the ADC within your device, use the listed part number to locate the appropriate Analog Devices data sheet at www.analog.com.

Typical Specifications

ADC DC offset	±7.1 mV			
DC-coupled common-mode output ±0.8 mV (50 Ω			erminated)	
Full Scale Input				
Gain = 0 dB			2.085 V _{pk-pk}	
Gain = 6 dB (FS at 0 dB divided by 2)			1.043 V _{pk-pk}	
Gain = 12 dB (FS at 0 dB divided by 4)			0.5212 V _{pk-pk}	
DC Gain Error (Full Scale)			'	
Gain = 0 dB ±0.69		±0.6%	%	
Gain = 6 dB ±0.8		±0.8%		
Gain = 12 dB		±1.5%		

Noise					
Gain (dB)	Full Scale (V _{pk-pk})	Average Noise Density			
		(nV/√Hz)	(dBm/Hz)	(dBFS/Hz)	
0	2.085	26.9	-138.4	-148.4	
6	1.0425	14.8	-143.6	-147.6	
12	0.52125	8.6	-148.3	-146.3	

Passband					
AC-coupling low cut-off frequency (–3 dB)	20 kHz				
DC-coupling low cut-off frequency	0 Hz				
Passband High Cut-off Frequency (–3 dB)					
Filter Bypass 117 MHz					
Elliptic Filter	.1 MHz				
Bessel Filter 24.1 MHz					
Group Delay Flatness					
Maximum Frequency to 2 ns					
Elliptic Filter		30 MHz			
Bessel Filter		53 MHz			
Signal to Noise Ratio (SNR) ²					
Input		9.7 MHz			
Gain = 0 dB		69.6 dB			
Gain = 6 dB		68.8 dB			

2. Measured at –1 dBFS.

Gain = 12 dB		67.5 dB		
Total Harmonic Distortion (THD) ^[1]				
Input	9.7 MHz			
Gain = 0 dB	–80.5 dBc			
Gain = 6 dB	-85.0 dBc			
Gain = 12 dB	–86.0 dBc			
Spurious-Free Dynamic Range (SFDR) ^[1]				
Input	9.7 MHz			
Gain = 0 dB	-83.0 dBc			
Gain = 6 dB	-86.0 dBc			
Gain = 12 dB	–87.0 dBc			

AI Channel-to-Channel Crosstalk

Note The following crosstalk tables are measured at 0 dB gain with a -1 dBFS 10 MHz signal on the aggressor channel, while the other channels are terminated at 50 Ω . When measuring crosstalk at 6 dB and 12 dB gain, the crosstalk is 6 dB and 12 dB worse, respectively.

Aggressor	Receiver Channel (50 Ω Terminated)							
Channel N (03)	Adjacent Channel Path (<i>N</i> – 1)			Adjacent Channel Path (N + 1)				
	Bypass	Elliptic	Bessel	Bypass	Elliptic	Bessel		
Filter Bypass	–102 dB	–97 dB	–100 dB	–98 dB	–89 dB	-81 dB		
Elliptic Filter	–102 dB	–77 dB	-81 dB	–104 dB	–79 dB	–77 dB		
Bessel Filter	–87 dB	–73 dB	–77 dB	–103 dB	–83 dB	-80 dB		

Table 3. AI Channel Crosstalk (Adjacent Channel Paths **N** - 1 and **N** + 1)

Table 4. AI Channel Crosstalk (Channel Paths $N \pm 2$ and $N \pm 3$)

Aggressor Channel N (03)	Receiver Channel (50 Ω Terminated)				
	Channel Path (<i>N</i> ±2)		Channel Path (<i>N</i> ±3)		
	Bypass	Elliptic or Bessel Filter	Bypass	Elliptic or Bessel Filter	
Filter Bypass	–112 dB	–102 dB	–112 dB	–107 dB	
Elliptic Filter	–112 dB	–85 dB	–112 dB	–90 dB	
Bessel Filter	–112 dB	–86 dB	–112 dB	–90 dB	

Phase adjust DAC range	429 ± 15 degrees
Frequency adjust DAC range	±100 ppm
Data rate (IOModuleClock0)	Sample rate

Measurements

Frequency Response

Figure 3. AC-Coupled Low Frequency Response (Multiple Channels Overlaid)

Figure 1. Elliptic Filter Frequency Response (Multiple Channels Overlaid)

Figure 6. Elliptic Filter Frequency Response: 0 to -6 dB (Multiple Channels Overlaid)

Figure 1. Bessel Filter Frequency Response (Multiple Channels Overlaid)

Group Delay

Figure 1. NI-5734 Elliptic Filter Group Delay (44 Channels Overlaid)

Analog Input Total Phase Noise

Figure 1. NI-5734 AI Phase Noise (40 MHz Input, PLL Unlocked, Onboard Oscillator, 453 FS RMS Jitter)

Figure 1. NI-5734 AI Phase Noise (40 MHz Input, PLL Locked to PXI 10 MHz Reference Clock, Onboard Oscillator, 448 FS RMS Jitter)

Figure 1. NI-5734 Gain at 0 dB; Elliptic, Bessel, or Filter Bypass; AC- or DC-Coupled

Figure 1. NI-5734 Gain at 12 dB; Elliptic, Bessel, or Filter Bypass; AC- or DC-Coupled

Spectral Measurements (16,382 Point FFT)

Figure 1. NI-5734 Gain at 0 dB: -1 dBFS at 20.1 MHz, -85 dBc SFDR, Bypass Filter, 100 Averages RMS

Figure 1. NI-5734 Gain at 12 dB: -1 dBFS at 20.1 MHz, -87 dBc SFDR, Bypass Filter, 100 Averages RMS

Figure 1. NI-5734 Gain at 12 dB: -1 dBFS at 20.1 MHz, -87 dBc SFDR, Bypass Filter, 10 Averages RMS

Two-Tone FFT

Figure 1. NI-5734 at 12 dB Gain and Filter Bypass: -81 dBc, f_{in} = 19.6 MHz (-7 dBFS), 20.8 MHz

Internal Sample Clock

General Characteristics

Clock distribution part number

AD9511³; clock distribution

3. For additional information about the AD9511, refer to the Analog Devices data sheet at

Oscillator type	VCXO
Frequency	120 MHz ± 100 ppm
Phase noise	Refer to the Analog Input Total Phase Noise section

Typical Specifications

Frequency stability		
Temperature	±30 ppm over the operating temperature range	
Aging	±5 ppm per year	

CLK IN

General Characteristics

Number of channels	1, single-ended
Connector type	SMB
Input impedance	50 Ω
Input coupling	AC

www.analog.com.

Input voltage range	0.40 V _{pk-pk} to 5.2 V _{pk-pk}
Absolute maximum voltage	±8.0 V DC, 8.0 V _{pk-pk} AC
Duty cycle	40% to 60%

Table 5. NI-5734 Clock Sources

Clock Configuration	Supported Sample Rates	External Clock Type	External Clock Frequency	Description
Internal Clock PLL Off	120 MS/s	_	_	The internal VCXO acts as a free- running clock.
Internal Clock PLL On (IoModSyncClk)	120 MS/s		10 MHz	The internal VCXO locks to IoModSyncClk (Sync Clock), which is provided only through the backplane of supported devices.
Internal Clock PLL On (CLK IN)	120 MS/s	Reference clock	10 MHz	The internal VCXO locks to an external Reference clock, which is provided through the CLK IN front panel connector.
External Clock (CLK IN)	The supported sample rate is equal to the external clock frequency.	Sample clock	Min = 50 MHz Max = 120 MHz	An external Sample clock can be provided through the CLK IN front panel connector.

AUX I/O (Port 0 DIO <0..3>, Port 1 DIO <0..3>, and PFI <0..3>)

General Characteristics

Number of channels		12 bidirectional (8 DIO and 4 PFI)	
Connector type		HDMI	
HDMI 3.3		3 V LVCMOS	
Interface logic			
Maximum V _{IL}		0.8 V	
Minimum V _{IH}		2.0 V	
Maximum V _{OL}		0.4 V	
Minimum V _{OH}		2.7 V	
Maximum V _{OH}		3.6 V	
Z _{out}		$50 \Omega \pm 20\%$	
I _{out} (DC)		±2 mA	
Pull-down resistor 150		xΩ	

Recommended operating voltage	–0.3 V to 3.6 V
Overvoltage protection	±10 V
Maximum toggle frequency	6.6 MHz
+5 V maximum power	10 mA
+5 V voltage tolerance	4.2 V to 5 V

Power

Total power, typical operation4.5 W

Physical

Dimensions	12.9 x 2.0 x 12.1 cm (5.1 x 0.8 x 4.7 in.)
Weight	332 g (11.7 oz)
Front panel connectors	BNC, SMB, and HDMI

Environmental

Operating environment ⁴	0 °C to 55 °C, tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.

Relative humidity range	10% to 90%, noncondensing, tested in accordance with IEC-60068-2-56.
Pollution Degree	2
Altitude	2,000 m

Indoor use only.

Storage environment		
Ambient temperature range	–20 °C to 70 °C, tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.	
Relative humidity range	5% to 95%, noncondensing, tested in accordance with IEC-60068-2-56.	

Note Clean the device with a soft, non-metallic brush. Make sure that the device is completely dry and free from contaminants before returning it to service.

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse, tested in accordance with IEC-60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.	
Random vibration		
Operating	5 Hz to 500 Hz, 0.3 g _{rms}	

4. For PXI/PXI Express chassis configurations that group NI FlexRIO adapter modules in three or more contiguous slots, NI recommends limiting the ambient operating temperature to less than 50 °C.

Nonoperating	5 Hz to 500 Hz, 2.4 $g_{\rm rms}$, tested in accordance with IEC-60068-2-64. Nonoperating
	test profile exceeds the requirements of MIL-PRF-28800F, Class 3.

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the *Online Product Certification* section of this document.

Online Product Certification

To obtain product certifications and the Declaration of Conformity for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **NI and the Environment** Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国RoHS)

 ●●●●中国RoHS-NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs_china.)

NI Services

Visit <u>ni.com/support</u> to find support resources including documentation, downloads,

and troubleshooting and application development self-help such as tutorials and examples.

Visit <u>ni.com/services</u> to learn about NI service offerings such as calibration options, repair, and replacement.

Visit <u>ni.com/register</u> to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 N Mopac Expwy, Austin, TX, 78759-3504, USA.