PXIe-5451 Specifications

Contents

	cifications
--	-------------

PXIe-5451 Specifications

These specifications apply to the 128 MB, 512 MB, and 2 GBPXIe-5451.

Notice To ensure the specified EMC performance, you must install PXI EMC Filler Panels, National Instruments part number 778700-01, in all open chassis slots.

Notice To ensure the specified EMC performance, operate this product only with shielded cables and accessories.

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Nominal* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Signals terminated with 50 Ω to ground
- Main path set to 2.5 V_{pk} differential (gain = 2.5, 5 V_{pk-pk} differential)
- Direct path set to 0.5 V_{pk} differential (gain = 0.5, 1 V_{pk-pk} differential)

- Sample clock set to 400 MS/s
- Onboard Sample clock with no Reference clock
- Analog filter enabled
- 0 °C to 55 °C ambient temperature

Warranted specifications are valid under the following conditions unless otherwise noted.

- 15 minutes warm-up time at ambient temperature
- Calibration cycle maintained
- Chassis fan speed set to High
- NI-FGEN instrument driver used
- NI-FGEN instrument driver self-calibration performed after instrument is stable

Typical specifications are valid under the following conditions unless otherwise noted:

• Over ambient temperature ranges of 23 ±5 °C with a 90% confidence level, based on measurements taken during development or production

Analog Outputs

CH 0+/-, CH 1+/- (Analog Outputs, Front Panel Connectors)

Number of channels	2
Output type	Single Ended ^[1] , Differential
Output paths	Main path, Direct path
DAC resolution	16

Amplitude and Offset

Amplitude resolution	4 digits, <0.0025% (0.0002 dB of amplitude range)
Offset resolution ^[2]	4 digits, < 0.002% of offset range

Full-Scale Amplitude Range

Table 1. Full-Scale Amplitude Range^[3]

		Amplitude ^[4]					
Flatness Correction	Load	Single Main	e-Ended Path ^[5]	Differential	Main Path ^[6]	Differential [Direct Path ^[7]
State		Min. (V _{PPSE})	Max. (V _{PPSE})	Min. (V _{PPD})	Max. (V _{PPD})	Min. (V _{PPD})	Max. (V _{PPD})
	50 Ω	0.00176	2.50	0.00352	5.00	0.708	1.00
Disabled	1 kΩ	0.00336	4.76	0.00671	9.52	1.35	1.9
	Open	0.00352	5.00	0.00705	10.00	1.42	2.00
	50 Ω	0.00124	1.75	0.00247	3.50	0.567	0.8
Enabled	1 kΩ	0.00235	3.33	0.00470	6.66	1.08	1.52
	Open	0.00247	3.50	0.00493	7.00	1.14	1.6

Analog Offset Range

Table 2. Analog Offset Range, Per Terminal

	Amplitude ^[10] , ^[11]	
Load	Main Path	Direct Path
50 Ω	±1.00	
1 kΩ	±1.905	
Open	±2.00	

Accuracy

Channel-to-channel timing alignment accuracy ^[12]		
Main path	50 ps; 40 ps, typical	
Direct path	35 ps; 25 ps, typical	

DC Accuracy^[13]

Table 3. Absolute Gain Error

Temperature Range	Single-Ended Main Path	Differential Main Path	Differential Direct Path
Within ±5 °C of Self-Cal temperature	 ±(0.4% of single-ended output range^[14] + 0.5 mV) ±(0.3% of single-ended output range^[14] + 0.3 mV), typical 	\pm (0.6% of differential output range ^[15] + 1 mV) \pm (0.43% × differential output range ^[15] + 500 μV), typical	±0.2% of differential output range
Outside ± 5 °C of Self- Cal temperature	-0.05%/°C -0.035%/°C, typical	-0.05%/°C -0.035%/°C, typical	+0.030%/°C +0.015%/°C, typical

Absolute single-ended Main path offset error (0 °C to 55 °C)	<pre>±(0.15% of offset + 0.04% of single-ended output range^[14] + 1.25 mV) ±(0.08% of offset + 0.025% of single-ended output range^[14] + 0.75 mV), typical</pre>
Absolute differential offset	

Differential Main path	<pre>±(0.3% of differential offset + 0.01% of differential output range^[15] + 2 mV) ±(0.16% of differential offset + 0.01% of differential output range^[15] + 1 mV), typical</pre>		
Differential Direct path (0 °C to 55 °C)	±1 mV		
Absolute common-mode offset			
Differential Main path		±(0.3% of common-mode offset + 2 mV) ±(0.16% of common-mode offset + 1 mV), typical	

Table 4. Channel-to-Channel Relative Gain Error

Differential Direct path (0 °C to 55 °C) $^{[16]}$

Temperature Range	Differential Main Path	Differential Direct Path
Within ±5 °C of Self-Cal temperature	\pm (0.66% of differential output range ^[15] + 1.75 mV)	±0.08% of differential output range ^[15]
Outside ±5 °C of Self-Cal temperature	-0.02%/°C -0.01%/°C, typical	+0.010%/°C +0.005%/°C, typical

±350 μV

AC Amplitude Accuracy^[17]

Absolute AC amplitude accuracy		
Single-ended Main path	±(0.8% of single-ended output range + 1 mV _{RMS})	

	$\pm(0.4\%$ of single-ended output range + 750 $\mu V_{RMS}),$ typical		
Differential Main path	±(0.8% of differential output range + 1.5 mV _{RMS}) ±(0.4% of differential output range + 1.5 μV _{RMS}), typical		
Differential Direct path	±0.5% of differential output range		
Channel-to-channel, relative AC amplitude accuracy		±0.2% of differential output range ±0.07% of differential output range, typical	

Output Characteristics

DC output resistance			
Main path	50 Ω nominal, per connector		
Direct path ^[18]	50 Ω nominal, per connector		
Return loss (Nominal)			
Single-ended and differential Ma	in path		
Up to 20 MHz		30 dB	
Up to 60 MHz	27 dB		
Up to 135 MHz		12 dB	
Single-ended Direct path			

5 MHz to 60 MHz			26 dB	
60 MHz to 145 MH	Z			15 dB
Differential Direc	t path			
Up to 20 MHz			35 d	В
Up to 60 MHz			22 d	В
Up to 145 MHz			12 d	В
Load impedance compensation	Output amplitude is compensated for user-specified load impedance to groun Performed in software. ^[19]			ad impedance to ground.
Output coupling	DC			
Output enable	Software-selectable. When disabled, output is terminated with a 50 $\Omega,$ 1 W resistor.			ed with a 50 Ω, 1 W
Maximum output overload				
Main path		$\pm 12 V_{pk}$ from a 50 Ω source		
Direct path ^[20]		±8 V _{pk} from a 50 Ω source		
Waveform summing	The output terminals support waveform summing, which means the outputs of multiple PXIe-5451 signal generators can be connected together. ^[21]			ch means the outputs of together. ^[21]

Frequency Response

Table 5. Ar	nalog Ba	ndwidth	n, Typical ^[22]
_		_	

Path	Baseband	Complex Baseband
Main Path, Filter Disabled	180 MHz for each I and Q output	360 MHz when used with external I/Q modulator
Main Path, Filter Enabled	135 MHz for each I and Q output	270 MHz when used with external I/Q modulator
Direct Path	145 MHz for each I and Q output	290 MHz when used with external I/Q modulator

Analog filter				
Main path	7-pole elliptic filter for image suppression			
Direct path	4-pole filter for image suppression			

Table 6. Passband Flatness

Frequency	Channel- to- Channel	Single-Ended and Differential Main Path, Filter Enabled		Direct Path ^[25]		
Range	Passband Flatness Matching Enabled	Flatness Correction Disabled	Flatness Correction Enabled ^[26]	Flatness Correction Disabled	Flatness Correction Enabled ^[26]	
0 MHz to 60 MHz ^[27]	No	0.8 dB, typical	±0.30 dB ±0.20 dB, typical	0.5 dB, typical	±0.24 dB ±0.13 dB, typical	

Frequency	Channel- to- Channel	Single-Ended and Differential Main Path, Filter Enabled		Direct Path ^[25]		
Range	Passband Flatness Matching Enabled	Flatness Correction Disabled	Flatness Correction Enabled ^[26]	Flatness Correction Disabled	Flatness Correction Enabled ^[26]	
	Yes	±0.12 dB, typical	±0.12 dB typical	0.05 dB, typical	0.03 dB, typical	
60 MHz ^[27] to 135 MHz ^[28]	No	3 dB, typical	±0.50 dB ±0.30 dB, typical	1.9 dB, typical	±0.34 dB ±0.19 dB, typical	
	Yes	±0.20 dB, typical	±0.14 dB typical	0.18 dB, typical	0.04 dB, typical	

Figure 1. Main Path Filter Enabled Amplitude Response with Flatness Correction Enabled and Disabled, 400 MS/s, Gain = 2.5, Differential, Referenced to 50 kHz, Representative Unit

Figure 2. Direct Path Amplitude Response with Flatness Correction Enabled and Disabled,400 MS/s,

Differential, Referenced to 50 kHz, Representative Unit

Figure 3. Main and Direct Path Amplitude Response with Flatness Correction Enabled, 400 MS/s, Differential, Referenced to 50 kHz, Representative Unit

Figure 4. Main Path Characteristic Frequency Response of Image Suppression Filter, Representative

Figure 5. Direct Path Characteristic Frequency Response of Image Suppression Filter, Representative Unit

Note Sinc response due to DAC sampling is not included in the previous two figures.

Spectral Characteristics

		Single-Ended Main Path			Differential Main Path			Differenti Direct Pa
Frequency Range	Frequency Range	Gain = 0.25 0.5 V _{PPSE}	Gain = 0.625 1.25 V _{PPSE}	Gain = 1.25 2.5 V _{PPSE}	Gain = 0.5 1 V _{PPD}	Gain = 1.25 2.5 V _{PPD}	Gain = 2.5 5 V _{PPD}	Gain = 0. 1 V _{PPD}
SFDR With	DC to 7 MHz		82			85		
(dB) DC to 200 MHz		75			75			75
SFDR DC to Without 7 MHz		82	88	95	98		98	
Harmonics (dB)	DC to 200 MHz	82	83	84		84		84

 Table 7. Nominal Spurious Free Dynamic Range (SFDR) at 1 MHz

Table 13. Typical Spurious Free Dynamic Range (SFDR) from DC to 200 MHz^[30]

		Single-Ended Main Path			Differential Main Path			Different Direct Pa
	Frequency	Gain = 0.25 0.5 V _{PPSE}	Gain = 0.625 1.25 V _{PPSE}	Gain = 1.25 2.5 V _{PPSE}	Gain = 0.5 1 V _{PPD}	Gain = 1.25 2.5 V _{PPD}	Gain = 2.5 5 V _{PPD}	Gain = 0. 1 V _{PPD}
	10 MHz	73 (75)	73 (75)	73 (75)	73 (75)	73 (75)	73 (73)	73 (75)
SFDR With	60 MHz	65	61	56	69	67	64	70 (72)
Harmonics	100 MHz	53	52	49	55	54	53	60
(dB) ^{[<u>31]</u>}	120 MHz	62	62	62	62	62	62	62
	160 MHz	_						
SFDR 10 M Without Harmonics 60 M	10 MHz			74 (7	6)			74 (76)
	60 MHz			72 (7	4)			72 (74)

	Frequency	Single-Ended Main Path			Differential Main Path			Different Direct Pa	
		Gain = 0.25 0.5 V _{PPSE}	Gain = 0.625 1.25 V _{PPSE}	Gain = 1.25 2.5 V _{PPSE}	Gain = 0.5 1 V _{PPD}	Gain = 1.25 2.5 V _{PPD}	Gain = 2.5 5 V _{PPD}	Gain = 0. 1 V _{PPD}	
	100 MHz		66				64		
(dB)	120 MHz		62						
	160 MHz								

Table 9. Out-of-Band Performance (Nominal)

In-Band Tone Frequency (MHz)	Out-of-Band Spur Level (dBm)						
	Main Path, Filter Enabled	Direct Path					
0 MHz to 20 MHz	<-65 dBm	<-80 dBm					
20 MHz to 50 MHz	<-45 dBm	<-65 dBm					

Table 10. Channel-to-Channel Crosstalk (Nominal)

Aggressor	Main Path ^[34] (0 MHz to	Direct Path			
Output Amplitude	200 MHz)	0 MHz to 150 MHz	0 MHz to 200 MHz		
2.5	–90 dBc				
1.25	–85 dBc		20 h 00 -		
0.5	–80 dBc	<90 QBC	<80 dBC		
0.15	–70 dBc				

			THD (dBc)					
Output	Frequency	Ma	in Path					
Amplitude	(MHz)	Single- Ended	Differential	Direct Path				
	10	-71	-71					
	20	-66	-69					
	40	-59	-64					
2.5 V _{PPSE} ,	60	-55	-61					
$5 V_{PPD}$	80	-51	-55					
	120	-50	-51					
	140	-50	-52					
	160	-50	-53					
	10	-78	-75	_				
	20	-72	-73					
	40	-63	-69					
1.25 V _{PPSE,}	60	-60	-65					
$2.5 V_{PPD}$	80	-56	-59					
	120	-56	-59					
	140	-56	-59					
	160	-55	-59					
	10	-80	-79	-75				
	20	-74	-75	-70				
0.5 V _{PPSE,} 1 V _{PPD}	40	-68	-69	-68				
	60	-64	-69					
	80	-62	-65	-68				
	100		_	-68				
	120	-65	-70	-78				

Table 11. Typical Total Harmonic Distortion (THD)

	Frequency (MHz)	THD (dBc)					
Output		Main Path					
Amplitude		Single- Ended	Differential	Direct Path			
	140	-64	-69	_			
	160	-61	-66	-83			

Figure 6. Direct Path, Total Harmonic Distortion, Typical

Figure 7. Single-Ended Main Path, Total Harmonic Distortion, Typical

Figure 8. Differential Main Path, Total Harmonic Distortion, Typical

Table 12. Typical Intermodulation Distortion (IMD3)

Output Amplitude	Frequency (MHz)	IMD (dBc)				
		Single- Ended and Differential Main Path	Direct Path ^[37]			
2.5 V _{PPSE,} 5 V _{PPD}	10	-87				
	20	-82	—			

	Frequency (MHz)	IMD (dBc)				
Output Amplitude		Single- Ended and Differential Main Path	Direct Path ^[37]			
	40	-71				
	60	-63				
	80	-57				
	120	-51				
	160	-48				
	10	-92				
	20	-87				
	40	-79				
1.25 V _{PPSE} , 2 5 V _{PPD}	60	-72				
2.0 4770	80	-66				
	120	-61				
	160	-57				
	10	-87	-84			
	20	-85	-81			
	40	-82	-75			
0.5 V _{PPSE} ,	60	-79	—			
$1V_{PPD}$	80	-75	-71			
	100		-68			
	120	-79	-68			
	160	-75	-66			
0.1 V _{PPSE,} 0.2 V _{PPD}	10	-89				
	20	-83				
	40	-78	—			
	60	-73				

		IMD (dBc)				
Output Amplitude	Frequency (MHz)	Single- Ended and Differential Main Path	Direct Path ^[37]			
	80	-69				
	120	-66				
	160	-65				

Figure 9. Single-Ended and Differential Main Path, Intermodulation Distortion, 200 kHz Separation, Typical

Figure 10. Direct Path, Intermodulation Distortion, 200 kHz Separation, Typical

 Table 13. Average Noise Density^[38]

	Output Amplitude		Average	Average Noise Density			
Path	V _{PPSE}	dBm	Object Missing STRISOFT This object is not available in the repository.	dBm/Hz	dBFS/Hz		
	2.5	12	12.57	-145	-157		
Single-Ended Main Path	0.5	-2	9.99	-147	-145		
	0.06	-20.4	9.99	-147	-126.6		
	5	18	17.76	-142	-160		
Differential Main Path	1	4	14.11	-144	-148		
	0.12	-14.4	14.11	-144	-129.6		
Differential Direct Path	1	4.0	2.24	-160	-164		

Figure 11. Single-Ended Main Path 10.000 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS,

Representative Unit

Figure 12. Single-Ended Main Path 10.100 MHz Single-Tone Spectrum, 400 MS/s, –1 dBFS, Representative Unit

Figure 13. Single-Ended Main Path 110.100 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS,

Representative Unit

Figure 14. Differential Main Path 10.000 MHz Single-Tone Spectrum, 400 MS/s, –1 dBFS, measured through a balun, Representative Unit

Figure 15. Single-Ended Main Path Intermodulation Distortion, 1 MHz Separation, 20 MHz Tone, 400

MS/s, - 7 dBFS, Representative Unit

Figure 16. Direct Path Intermodulation Distortion, 1 MHz Separation, 20 MHz Tone, 400 MS/s, – 7 dBFS, Representative Unit

Figure 17. Direct Path 10.000 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS, Representative Unit

Figure 18. Direct Path 10.100 MHz Single-Tone Spectrum, 400 MS/s, -1 dBFS, Representative Unit

Note The noise floor on all spectral graphs is limited by the measurement device.

Output Phase Noise and Jitter

	Output	System Phase Noise Density (dBc/Hz)					System Output
Sample Clock Source	Freq. (MHz)	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	Jitter ^[40] (fs)
Internal, High	10	<-121	<-137	<-146	<-152	<-153	<350
Resolution Clock, 400 MS/s	100	<-101	<-119	<-126	<-136	<-141	<350
CLK IN External 10 MHz	10	<-122	<-135	<-146	<-152	<-153	<350
Reference Clock,400 MS/s	100	<-105	<-115	<-126	<-136	<-141	<350

 Table 14. Typical Output Phase Noise and Jitter^[39]

Figure 20. Phase Noise on a Representative Module, 100 MHz Sine Wave, 400 MS/s Internal Clock

Sample Rate, Chassis Fans High, No Reference Clock

Suggested Maximum Frequencies for Common Functions

Function	Main Path	Direct Path ^[41]
Sine	135 MHz	145 MHz
Square	150 MHz ^[42]	33 MHz (<133 V/μs slew rate) ^[43]
Ramp	20 MHz ^[42]	1 MHz (< 50 V/µs slew rate) ^[43]
Triangle	20 MHz ^[42] (5 MHz)	8 MHz

Table 15. Suggested Maximum Frequencies

Pulse Response

Table 16. Typical Rise/Fall Time (10% to 90%)^[44]

		Main Path		
Flatness Correction	Filter Disabled	Filter Enabled	Direct Path	
Flatness Correction Disabled	1.5 ns	3 ns	3 ns	
Flatness Correction Enabled	_	3 ns	2.5 ns	

Table 17. Typical Aberration

		Main Path		
Flatness Correction	Filter Disabled	Filter Enabled	Direct Path	
Flatness Correction Disabled	3%	18%	$18\% \left(7\%\right)^{[48]}$	
Flatness Correction Enabled	_	25%	22%	

Clocking

Onboard Sample Clock

Sample clock rate range	12.2 kS/s to 400 MS/s
Sample clock rate frequency resolution	<5.7 μHz ^[49]
Sample clock delay	0 ns to 2 ns, independent per channel ^[50]
Sample clock delay resolution	10 ps nominal
Sample clock timebase phase adjust	±1 Sample clock timebase period

External Sample Clock

	External Sample clock source	CLK IN front panel connector, with multiplication and division
--	------------------------------	--

External Sample clock rate	10 MS/s, 20 MS/s to 400 MS/s
Sample Clock rate range	12.2 kS/s to 400 MS/s
Multiplication/Division factor range	Varies depending on the external Sample clock rate
External Sample clock delay	0 ns to 2 ns, independent per channel ^[51]
External Sample clock delay resolution	10 ps, nominal
External Sample clock timebase phase adjust	±1 Sample clock timebase period

External Sample Clock Timebase

External Sample clock timebase sources	CLK IN front panel connector, with division
External Sample clock timebase rate range	200 MS/s to 400 MS/s
Divide factor range	1, 2 to 32768 in steps of 2
Sample Clock delay	0 ns to 2 ns, independent per channel
Sample Clock delay resolution	10 ps nominal

Reference Clock

Reference clock sources	None (internal reference), PXI_CLK10 (backplane), or CLK IN (front panel connector)	
Reference clock frequency ^[52]	·	
In increments of 1 MHz		1 MHz to 100 MHz
In increments of 2 MHz		100 MHz to 200 MHz
In increments of 4 MHz		200 MHz to 400 MHz
Internal reference clock frequency accuracy	± 0.01% ^[53]	

Exporting Clocks

Table 18. Exported Clock Rates

Clock	Destination	Rates
Deference Clask	CLK OUT	1 MHz to 400 MHz
Reference Clock	PFI<01>	1 MHz to 200 MHz
5 1 5 4]	CLK OUT	100 kHz to 400 MHz
Sample Clock ¹⁰⁻¹¹	PFI<01>	0 MHz to 200 MHz
6 I 6I I 7 I [55]	CLK OUT	100 kHz to 400 MHz
Sample Clock Timebase	PFI<01>	0 MHz to 200 MHz

Terminals

CLK IN (Sample Clock and Reference Clock Input, Front Panel Connector)

Direction Input		Input		
Destinations		Reference	Reference clock, Sample clock, or Sample clock timebase	
Frequency range		1 MHz to 400 MHz ^[56]		
Input impedance		50Ω , nor	minal	
Input voltage range		'		
50% duty cycle input	500 mVpk-pk to 5 \		o 5 Vpk-pk into 50 Ω (–2 dBm to +18 dBm)	
45% to 55% duty cycle input	550 mVpk-pk to		o 4.5 Vpk-pk into 50 Ω (–1.2 dBm to +17 dBm)	
Input protection range				
50% duty cycle input			6 V _{pk-pk} into 50 Ω (19.5 dBm)	
45% to 55% duty cycle input			5.4 V _{pk-pk} into 50 Ω (18.5 dBm)	
Duty cycle requirements 45% to 5		45% to 55	5%	
Input coupling AC		AC		

CLK OUT (Sample Clock and Reference Clock Output, Front Panel Connector)

Direction	Output
Sources	Sample clock, divided by integer K ($1 \le K \le 3$, minimum ^[57]), Reference clock, or Sample clock timebase, divided by integer M ($1 \le M \le 1048576$)
Frequency Range	100 kHz to 400 MHz
Output Voltage	≥0.7 V _{pk-pk} into 50 Ω typical
Maximum Output Overload	3.3 V_{pk-pk} from a 50 Ω source
Output Coupling	AC
VSWR	1.3:1 up to 2 GHz nominal

PFI 0 and PFI 1 (Programmable Function Interface, Front Panel Connectors)

Direction	ction			Bidirectional	
Frequend	cy Range			DC to 200 MHz	
As an Inp	out (Trigger)				
Destinations		Start trigger, Script trigger			
Input Range		0 V to 5 V			
Input Protection Range		-2 V to +6.5 V			
Input vo	ltage				
V _{IH} 1.8 '		3 V			
V _{IL} 1.5 V		/			
Input Impedance		$10 \ \text{k}\Omega$, nominal			
As an Output (Event)					
Sources Sample clock divided by integer K (2 ≤ K ≤ 3, minimum ^[58]), Sample clock timebase divided by integer M (2 ≤ M ≤ 1048576), Reference clock, Marker event, Data marker event, Exported Start trigger, Exported Script trigger, Ready for Start event, Started event, or Done event					
Output impedance					

Main Path	50 Ω , nominal	
Direct Path	50 Ω (+4%, -0%)	
Maximum Output Overload		–2 V to +6.5 V
Output voltage ^[59]		
Minimum V _{OH}		
Open load		2.4 V
50 Ω load		1.3 V
Maximum V _{OL}		
Open load		0.4 V
50 Ω load		0.2 V
Rise/Fall Time		3 ns typical. ^[60]

Triggers and Events

Triggers

Sources	PFI<01> (SMB front panel connectors), PXI_Trig<07> (backplane connector), or Immediate (does not wait for a trigger). Immediate is the default value.
---------	---

Types	Start trigger edge, Script trigger edge and level, and software trigger	
Edge detection	Rising, falling	
Minimum Pulse Width	25 ns	
Delay from Trigger to Analog Output with OSP Disabled	154 Sample clock timebase periods + 65 ns, nominal	
Additional Delay with OSP Enabled	Varies with OSP configuration.	
Trigger exporting		
Exported Trigger Destinations	PFI<01> (SMB front panel connectors) or PXI_Trig<06> (backplane connector)	
Exported Trigger Delay	50 ns, nominal	
Exported Trigger Pulse Width	>150 ns	

Events

Destinations	PFI<01> (SMB front panel connectors) or PXI_Trig<06> (backplane connector)
Types	Marker<03>, Data Marker<01> ^[61] , Ready for Start, Started, Done

Quantum	Marker position must be placed at an integer multiple of two samples. There are two data markers per channel.		
Width	Adjustable, minimum of 2 samples. Default is 150 ns.		
Skew, with respect to analog output			
PFI<01>		±3 Sample clock periods	
PXI_Trig<06	>	±6 Sample clock periods	

Waveform Generation Capabilities

	The PXIe-5451 uses the Synchronization and Memory Core (SMC) technology in which
Memory	waveforms and instructions share onboard memory. Parameters, such as number of
Usage	segments in sequence list, maximum number of waveforms in memory, and number of samples available for waveform storage, are flexible and user defined.

Onboard Memory Size^[62]

128 MB option		134,217,728 bytes
512 MB option		536,870,912 bytes
2 GB option		2,147,483,648 bytes
Loop Count	1 to 16,777,215; Burst trigger: Unlimited	

Quantum	Waveform size must be an integer multiple of two samples.
Output modes	Arbitrary Waveform, Script, and Arbitrary Sequence

Table 19. Minimum Waveform Size (Samples)

Trigger Mode	Number of Channels	Arbitrary Waveform Mode	Arbitrary Sequence Mode >180 MS/s	Arbitrary Sequence Mode ≤180MS/s
c' 1	1	4	2	2
Single	2	4	4	4
Continuous	1	142	140	58
Continuous	2	284	280	116
Stopped	1	210	154	54
Stepped	2	420	308	108
Durat	1	142	1,134	476
Burst	2	284	2,312	952

Table 20. Memory Limits (Bytes)

Generation Mode	Number of Channels	128 MB	512 MB	2 GB
Arbitrary	1	67,108,352	268,434,944	1,073,741,312
Waveform Mode, Maximum Waveform Memory ^[65]	2	33,553,920	134,217,216	536,870,400
Arbitrary	1	67,108,352	268,434,944	1,073,741,312
Sequence Mode,	2	33,553,920	134,217,216	536,870,400

Generation Mode	Number of Channels	128 MB	512 MB	2 GB
Maximum Waveform Memory ^[66]				
Arbitrary	1	1,048,575	4,194,303	16,777,217
Sequence Mode, Maximum Waveforms ^[67]	2	524,287	2,097,151	8,388,607
Arbitrary	1	8,388,597	33,554,421	134,217,717
Sequence Mode, Maximum Segments in a Sequence ^[68]	2	4,194,293	16,777,205	67,108,853

Table 21. Maximum Waveform Play Times

Sample Rate	Number of Channels	128 MB	512 MB	2 GB
400 MS/s	1	0.17 seconds	0.67 seconds	2.68 seconds
	2	0.084 seconds	0.34 seconds	1.34 seconds
	1	2.68 seconds	10.74 seconds	42.95 seconds
25 MS/S	2	1.34 seconds	5.37 seconds	21.47 seconds
100 kS/s	1	11 minutes 11 seconds	44 minutes 44 seconds	2 hours 58 minutes 57 seconds
	2	5 minutes 35 seconds	22 minutes 22 seconds	1 hour 29 minutes 29 seconds

Onboard Signal Processing

I/Q Rate

OSP Interpolation Range	2, 4, 8, 12, 16, 20 24 to 8,192 (multiples of 8) 8,192 to 16,384 (multiples of 16) 16,384 to 32,768 (multiples of 32)
I/Q Rate ^[70]	Sample clock rate ÷ OSP interpolation
Data Processing Modes ^[71]	Real (I path only) or Complex (I/Q)
OSP Modes ^[72]	IF or Baseband
Maximum Bandwidth	0.8 × I/Q rate. When using an external I/Q modulator, RF Bandwidth = 0.8 × I/Q rate.

Prefilter Gain and Offset

Prefilter Gain and Offset Resolution	21 bits
Prefilter Gain Range	–16.0 to +16.0 (Values < 1 attenuate user data) ^[73]
Prefilter Offset Range	-1.0 to $+1.0^{[74]}$

Prefilter Output	(User data × Prefilter gain) + Prefilter offset ^[75]

Finite Impulse Response (FIR) Filtering

Table 22. FIR Parameters by Filter Type

Filter Types	Parameter	Minimum	Maximum
Flat ^[76]	Passband	0.4	0.4
Raised cosine ^[77]	Alpha	0.1	0.4
Root raised cosine ^[78]	Alpha	0.1	0.4

Numerically Controlled Oscillator (NCO)

Maximum Frequency	0.4 * <i>sample rate</i>
Frequency Resolution ^[79]	<i>Sample rate</i> /2 ⁴⁸
Tuning Speed ^[80]	250 μs, typical

Digital Performance

Maximum NCO Spur	<-90 dBc ^[81]
Interpolating Flat Filter Passband Ripple	<0.1 dB ^[82]
Interpolating Flat Filter Out-of-Band Suppression	>80 dB ^[83]

IF Modulation Performance

QAM Order	Symbol Rate (MS/s)	Alpha	aBandwidth	EVM (%)			MER (dB)		
				40 MHz	70 MHz	110 MHz	40 MHz	70 MHz	110 MHz
				IF	IF	IF	IF	IF	IF
M = 4	0.16	0.25	200 kHz	0.2	0.2	0.2	57	57	56
	0.80	0.25	1.00 MHz	0.2	0.2	0.2	57	56	55
	4.09	0.22	4.98 MHz	0.2	0.3	0.2	57	52	55
M = 16	17.6 ^[85]	0.25	22.0 MHz	0.3	0.5	0.4	51	45	49
	32.0 ^[86]	0.25	40.0 MHz	0.6	—	0.6	42		43
M = 64	5.36	0.15	6.16 MHz	0.2	0.3	0.2	54	51	53
	6.95	0.15	7.99 MHz	0.3	0.3	0.3	52	51	50
	25.0	0.15	28.75 MHz	0.4	0.6	0.4	46	43	46
M = 256	6.95	0.15	7.99 MHz	0.3	0.3	0.4	52	51	49

 Table 23. IF Modulation Performance, Nominal

Calibration

External Calibration	The external calibration calibrates the ADC voltage reference and passband flatness. Appropriate constants are stored in nonvolatile memory.
Self- Calibration	An onboard, 24-bit ADC and precision voltage reference are used to calibrate the DC gain and offset. Onboard channel alignment circuitry is used to calibrate the skew between channels. The self-calibration is initiated by the user through the software and takes approximately 60 seconds to complete. Appropriate constants are stored in nonvolatile memory.
Calibration Interval	Specifications valid within 1 year of external calibration
Warm-up Time	15 minutes

Power

+3.3 VDC			
Typical		1.9 A	
Maximum		2.0 A	
+12 VDC			
Typical		2.6 A	
Maximum		2.9 A	
Total power			
Typical 37.5		5 W	
Maximum	41.4 W		

Physical

Dimensions	3U, two-slot, PXI Express module 21.6 cm × 4.0 cm × 13.0 cm (8.5 in. × 1.6 in. × 5.1 in.)
Weight	550 g (19.4 oz)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C
Relative humidity range	10% to 90%, noncondensing

Storage Environment

Ambient temperature range	-25 °C to 85 °C
Relative humidity range	5% to 95%, noncondensing

Shock and Vibration

Operating shock	30	30 g peak, half-sine, 11 ms pulse	
Random vibration			
Operating		5 Hz to 500 Hz, 0.3 g _{rms}	

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations. **Note** Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国RoHS)

• ●●● 中国RoHS—NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/ rohs china。(For information about China RoHS compliance, go to ni.com/ environment/rohs_china.)