PXIe-4145 Specifications

Contents

PXIe-4145 Specifications

PXIe-4145 Specifications

Definitions

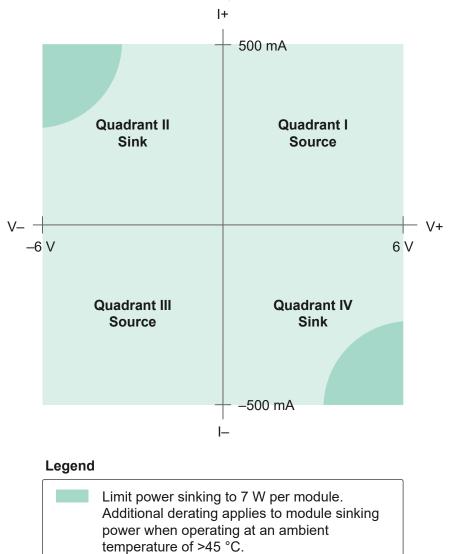
Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Warranted* unless otherwise noted.

Conditions


Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature¹ of 23 °C \pm 5 °C
- Calibration interval of 1 year
- 30 minutes warm-up time
- Self-calibration performed within the last 24 hours
- niDCPower Aperture Time property or NIDCPOWER_ATTR_APERTURE_TIME attribute set to 2 power-line cycles (PLC)
- Fans set to the highest setting if the PXI Express chassis has multiple fan speed settings
- 1. The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).

Device Capabilities

The following table and figure illustrate the voltage and the current source and sink ranges of the PXIe-4145.

Channels	DC Voltage Ranges	DC Current Source and Sink Ranges
0 through 3 [*]	±6 V	 10 μA 100 μA 1 mA 10 mA 100 mA 500 mA

Figure 1. PXIe-4145 Quadrant Diagram, All Channels

SMU Specifications

Voltage Programming and Measurement Accuracy/Resolution

Range	Resolution and noise (0.1 Hz to	1 Year Accuracy (23 °C ± 5 °C) ± (% of voltage + offset) ²		Tempco ± (% of voltage +	
	10 Hz)	T _{cal} ±5°C	T _{cal} ±1°C	offset)/°C, 0 °C to 55 °C	
6 V	6 μV	0.015% + 600 μV	0.013% + 200 μV	$0.0005\% + 1 \mu V$	

Table 2. Voltage Programming and Measurement Accuracy/Resolution

2. Accuracy is specified for no load output configurations. Refer to Load Regulation and Remote Sense in the *Additional Specifications* section for additional accuracy derating and conditions.

Related tasks:

• Calculating SMU Resolution

Related reference:

• Additional Specifications

Current

Resolution and Range noise (0.1 Hz to		1 Year Accuracy (23 °C ± 5 °C) ± (% of current + offset)		Tempco ± (% of current + offset)/°C,
	10 Hz)	T _{cal} ±5°C	T _{cal} ±1°C	0 °C to 55 °C
10 µA	15 pA	0.03% + 3 nA	0.03% + 1.2 nA	0.002% + 20 pA
100 µA	100 pA	0.03% + 25 nA	0.03% + 6.0 nA	0.002% + 200 pA
1 mA	1 nA	0.03% + 250 nA	0.03% + 60 nA	0.002% + 2.0 nA
10 mA	10 nA	0.03% + 2.5 μA	0.03% + 600 nA	0.002% + 20 nA
100 mA	100 nA	0.03% + 25 μA	0.03% + 6.0 μA	0.002% + 200 nA
500 mA	500 nA	0.1% + 125 μA	0.1% + 30 μA	0.008% + 1 μA

Related tasks:

• Calculating SMU Resolution

Related reference:

• Additional Specifications

Output Resistance Programming Accuracy/Resolution, Typical

Current limit range	Programmable resistance range	Resolution	Accuracy ± (% of resistance setting), T _{cal} ± 5 °C
10 µA	± 50 kΩ	1.0 Ω	0.04% + 260 mΩ
100 μΑ	± 5 kΩ	100 mΩ	0.04% + 35 mΩ
1 mA	± 500 Ω	10 mΩ	0.04% + 13 mΩ
10 mA	± 50 Ω	1.0 mΩ	0.04% + 10 mΩ
100 mA	±5Ω	100 μΩ	0.04% + 10 mΩ
500 mA	±1Ω	20 μΩ	0.12% + 10 mΩ

Table 4. Output Resistance Programming Accuracy/Resolution, Typical

Calculating SMU Resolution

Refer to the following figure as you complete the following steps to derive a resolution in absolute units:

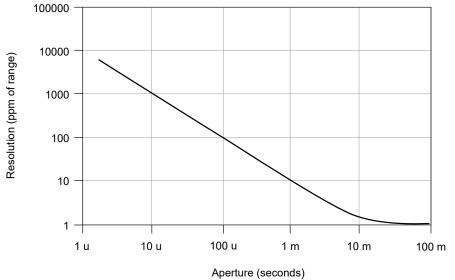


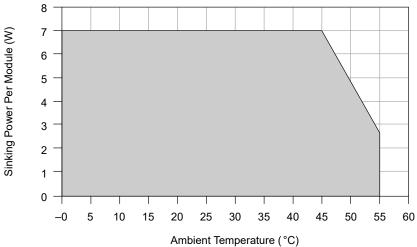
Figure 2. Noise and Resolution versus Measurement Aperture, Typical

- 1. Select a voltage or current range.
- 2. For a given aperture time, find the corresponding resolution.
- 3. To convert resolution from ppm of range to absolute units, multiply resolution in

ppm of range by the selected range.

Example of Calculating SMU Resolution

The PXIe-4145 has a resolution of 100 ppm when set to a 100 μ s aperture time. In the 6 V range, resolution can be calculated by multiplying 6 V by 100 ppm, as shown in the following equation:


 $6 V * 100 ppm = 6 V * 100 * 1 \times 10^{-6} = 600 \mu V$

Likewise, in the 10 mA range, resolution can be calculated by multiplying 10 mA by 100 ppm, as shown in the following equation:

 $10 \text{ mA} * 100 \text{ ppm} = 10 \text{ mA} * 100 * 1 \times 10^{-6} = 1 \mu\text{A}$

Sinking Power vs. Ambient Temperature Derating

The following figure illustrates sinking power derating as a function of ambient temperature.

Additional Specifications

Settling time 3 <100 µs to settle to 0.1% of voltage step, device configured for fast transient

	response, typical
Transient response	${<}100\mu s$ to recover within ${\pm}20$ mV after a load current change from 10% to 90% of range, device configured for fast transient response, typical
Wideband source noise ⁴	1.5 mV RMS, typical <20 mV _{pk-pk} , typical
Cable guard output impedance	10 kΩ, typical

Remote sense			
Voltage	Add 0.1% of LO lead drop to voltage accuracy specification		
Current	No additional error due to lead drop		
Maximum lead drop	Up to 1 V drop per lead for $ V_{out} \le 5$ V. For $ V_{out} > 5$ V, keep sum of $ V_{out} $ and total lead drop below 7 V		

Load regulation		
Voltage	10 μV at connector pins per mA of output load when using local sense, typical	
Current	20 pA + (1 ppm of range per volt of output change) when using local sense, typical	

3. Current limit set to ≥ 1 mA and $\geq 10\%$ of the selected current limit range.

4. 20 Hz to 20 MHz bandwidth. PXIe-4145 configured for normal transient response.

Isolation voltage, Channel-to-earth ground ⁵	60 VDC, CAT I, verified by dielectric withstand test, 5 s, continuous, characteristic
Absolute maximum voltage between any terminal and LO	20 VDC, continuous

The following figures illustrate the effect of the transient response setting on the step response of the PXIe-4145 for different loads.

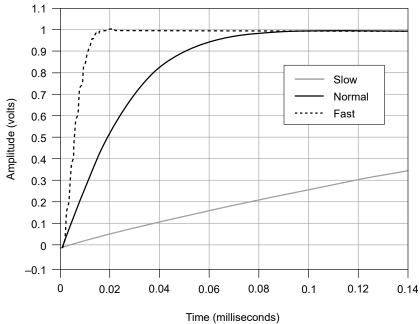
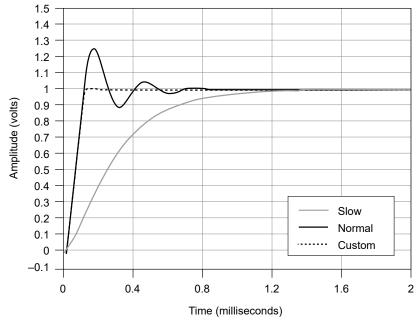



Figure 4. 1 mA Range No Load Step Response, Typical

5. Channels are isolated from earth ground but share a common LO.

Figure 5. 1 mA Range, 100 nF Load Step Response, Typical

Supplemental Specifications

Measurement and Update Timing

Available sample rates ⁶	(600 kS/s)/N
-------------------------------------	--------------

where

- $N = 6, 7, 8, \dots 2^{20}$
- S is samples

Sample rate accuracy	±50 ppm
----------------------	---------

6. When source-measuring, both the NI-DCPower Source Delay and Aperture Time properties affect the sampling rate. When taking a measure record, only the Aperture Time property affects the sampling rate.

Maximum measure rate to host ⁷	600,000 \$	S/s per channel, co	ontinuous
Maximum source update rate ⁸	1		
Sequence length <300 steps per iteration		100,000 updates/s per channel	
Sequence length ≥300 steps per iteration		100,000 updates/s per board	
Input trigger to			
Source event delay			5 μs
Source event jitter			1.7 μs
Measure event jitter			1.7 µs

Triggers

Input triggers		
Types	Start Source Sequence Advance Measure	
Sources (PXI trigger lines 0 to 7)		

- 7. Load dependent settling time is not included. Normal DC noise rejection is used.
- 8. As the source delay is adjusted or if advanced sequencing is used, maximum source update rates may vary.

Polarity		Configurable
Minimum pulse width		100 ns, nominal
Destinations ⁹ (PXI trigger lines 0 to 7)		
Polarity	Active high (n	ot configurable)
Minimum pulse width	>200 ns, nom	inal

Output triggers (events)			
Types	Source Complete Sequence Iteration Complete Sequence Engine Done Measure Complete		
Destinations (PXI to	rigger lines 0 to 7)		
Polarity	Configurable		
Pulse width	Configurable between 250 ns and 1.6 μs, nominal		

Note Pulse widths and logic levels are compliant with *PXI Express Hardware Specification Revision 1.0 ECN 1*.

9. Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.

Calibration Interval

Recommended calibration interval	1 year	

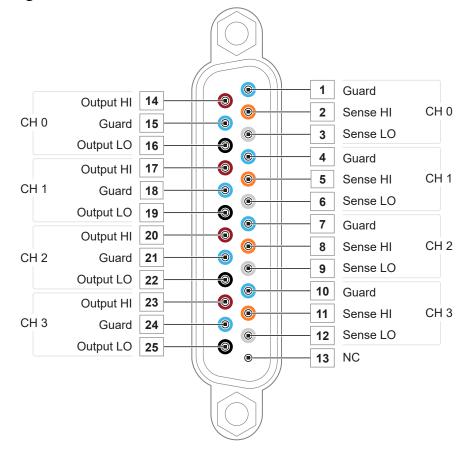
Physical

Dimensions	3U, one-slot, PXI Express/CompactPCI Express module 2.0 cm × 13.0 cm × 21.6 cm (0.8 in. × 5.1 in. × 8.5 in.)
Weight	408 g (14.39 oz)
Front panel connectors	25-position D-SUB, male

Power Requirements

PXI Express power requirement	2.1 A from the 12 V rail and 2.9 A from the 3.3 V rail	

Environmental Characteristics


Temperature		
Operating	0 °C to 55 °C	
Storage	-40 °C to 70 °C	
Humidity		

Operating	10% to 70%, noncondensing. Derate 1.3% per °C above 40 °C.			
Storage	5% to 95%,	5% to 95%, noncondensing		
Pollution Degre	ree 2			
Maximum altite	itude 2,000 m (800 mbar		(at 25 °C ambient temperature)	
Shock and Vibration				
Operating vibration			5 Hz to 500 Hz, 0.3 g RMS	
Non-operating vibration			5 Hz to 500 Hz, 2.4 g RMS	
Operating shock			30 g, half-sine, 11 ms pulse	

PXIe-4145 Pinout

The following figure shows the terminals on the PXIe-4145 connector.

Figure 6. PXIe-4145 Connector Pinout

Table 5. Signal Descriptions

Signal Name	Description
CH <03> Output HI	HI force terminal connected to channel power stage (generates and/or dissipates power). Positive polarity is defined as voltage measured on HI > LO.
CH <03> Guard	Buffered output that follows the voltage of the HI force terminal. Used to drive shield conductors surrounding HI force and Sense HI conductors to minimize effects of leakage and capacitance on low level currents.
CH <03> Output LO	LO force terminal connected to channel power stage (generates and/or dissipates power). Positive polarity is defined as voltage measured on HI > LO.
CH <03> Sense HI	Voltage remote sense input terminals. Used to compensate for I * R voltage drops in
CH <03> Sense LO	cable leads, connectors, and switches.
NC	No Connect.

Note PXIe-4145 channels are bank-isolated from earth ground, but also share a common LO.