PXIe-5645 Specifications

Contents

DVI	· c·	\sim
PXIE-5645 SI	pecifications	.3
	3 C C C G C O	_

PXIe-5645 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Typical-95* specifications describe the performance met by 95% (≈2σ) of models with a 95% confidence.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Warranted* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- 30 minutes warm-up time.
- Calibration cycle maintained.
- Chassis fan speed is set to High. In addition, NI recommends using slot blockers and EMC filler panels in empty module slots to minimize temperature drift.
- Calibration IP is used properly during the creation of custom FPGA bitfiles.
- Calibration Interconnect cable remains connected between CAL IN and CAL OUT front panel connectors.
- The cable connecting CAL IN to CAL OUT has not been removed or tampered with.
- Reference Clock source: Internal
- RF IN reference level: 0 dBm
- RF OUT power level: 0 dBm

• LO tuning mode: Fractional

• LO PLL loop bandwidth: Medium

LO step size: 200 kHzLO frequency: 2.4 GHzLO source: Internal

• I/Q IN voltage range: 0.5 V_{pk-pk} differential

• I/Q IN common-mode voltage: 0 V

• I/Q OUT voltage range: 0.5 V_{pk-pk} differential

• I/Q OUT common-mode voltage: 0 V

• I/Q OUT load impedance: 50Ω

• Digital equalization enabled for both RF and I/Q channels

Frequency

The following characteristics are common to both RF IN and RF OUT ports.

Frequency range		65 MHz to 6 GHz	
Bandwidth ^[1]		80 MHz	
Tuning resolution ^[2]		<1 Hz	
LO step size			
Fractional mode	Programmable step size	, 200 kHz default	
Integer mode 4 MHz, 5 MHz, 6 MHz, 12		MHz, 24 MHz	

Frequency Settling Time

Table 1. Maximum Frequency Settling Time

	Maximum Time (ms)		
Settling Time	Low Loop Bandwidth	Medium Loop Bandwidth ^[3] (default)	High Loop Bandwidth
≤1 × 10 ⁻⁶ of final frequency	1.1	0.95	0.38
≤0.1 × 10 ⁻⁶ of final frequency	1.2	1.05	0.4

The default medium loop bandwidth refers to a setting that adjusts PLL to balance tuning speed and phase noise, and it does not necessarily result in loop bandwidth between low and high.

This specification includes only frequency settling and excludes any residual amplitude settling.

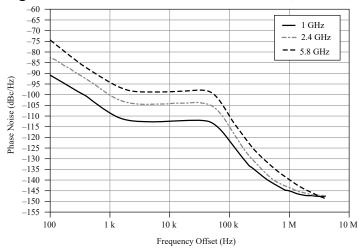
Internal Frequency Reference

Initial adjustment accuracy	±200 × 10 ⁻⁹
Temperature stability	$\pm 1 \times 10^{-6}$, maximum
Aging	$\pm 1 \times 10^{-6}$ per year, maximum
Accuracy	Initial adjustment accuracy ± Aging ± Temperature stability

Frequency Reference Input (REF IN)

Refer to the REF IN section.

Frequency Reference/Sample Clock Output (REF OUT)


Refer to the <u>REF OUT</u> section.

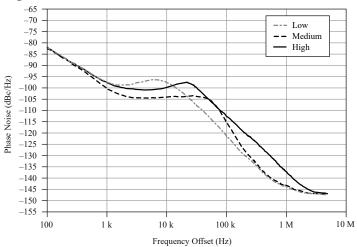

Spectral Purity

Table 2. Single Sideband Phase Noise

	Phase Noise (dBc/Hz), 20 kHz Offset (Single Sideband)			
Frequency	Low Loop Bandwidth	Medium Loop Bandwidth	High Loop Bandwidth	
<3 GHz	-99	-99	-94	
3 GHz to 4 GHz	-91	-93	-91	
>4 GHz to 6 GHz	-93	-93	-87	

Figure 1. Measured Phase Noise^[4] at 1 GHz, 2.4 GHz, and 5.8 GHz

Figure 2. Measured Phase Noise $^{[5]}$ at 2.4 GHz Versus Loop Bandwidth

RF Input

Amplitude Range

Amplitude range	Average noise level to +30 dBm (CW RMS)
RF reference level range/resolution	≥60 dB in 1 dB nominal steps

Amplitude Settling Time

<0.1 dB of final value ^[6]	125 μs, typical
<0.5 dB of final value ^[7] , with LO retuned	300 μs

Absolute Amplitude Accuracy

Table 3. VSA Absolute Amplitude Accuracy (dB)

Conton	15 °	C to 35 °C	0 °(C to 55 °C
Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
	_	±0.70	_	±0.75
65 MHz to <375 MHz	_	±0.65 (95th percentile, ≈ 2σ)	_	±0.65 (95th percentile, ≈ 2σ)
	±0.34, typical	±0.50, typical	±0.36, typical	±0.55, typical
	_	±0.65	_	±0.70
375 MHz to <2 GHz	_	±0.55 (95th percentile, ≈ 2σ)	_	±0.55 (95th percentile, ≈ 2σ)
	±0.17, typical	±0.35, typical	±0.22, typical	±0.40, typical
	_	±0.70	_	±0.75
2 GHz to <4 GHz	_	±0.55 (95th percentile, ≈ 2σ)	_	±0.60 (95th percentile, ≈ 2σ)
	±0.23, typical	±0.40, typical	±0.26, typical	±0.40, typical
	_	±0.90	_	±0.95
4 GHz to 6 GHz	_	±0.75 (95th percentile, ≈ 2σ)	_	±0.80 (95th percentile, ≈ 2σ)
	±0.30, typical	±0.55, typical	±0.33, typical	±0.55, typical

Conditions: Reference level -30 dBm to +30 dBm; measured at 3.75 MHz offset from the configured center frequency; measurement performed after the PXIe-5645 has settled.

For reference levels <-30 dBm, absolute amplitude gain accuracy is ±0.6 dB, typical for frequencies ≤ 4 GHz, and ±0.8 dB, typical for frequencies > 4 GHz. Performance depends on signal-to-noise ratio.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

Frequency Response

Table 4. VSA Frequency Response (dB) (Amplitude, Equalized)

RF Input Frequency	Bandwidth	Self-Calibration °C ± 5 °C
≤109 MHz	20 MHz	±1.0, typical
. 100 MIL 1 275 MIL	20 MHz	±0.5
>109 MHz to 375 MHz	40 MHz	±1.0, typical
>375 MHz to 6 GHz	80 MHz	±0.5

Conditions: Reference level -30 dBm to +30 dBm. This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

Figure 3. Measured Frequency Response, [8] 0 dBm Reference Level, Equalized

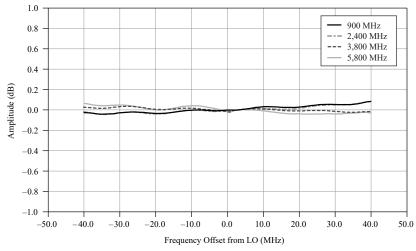
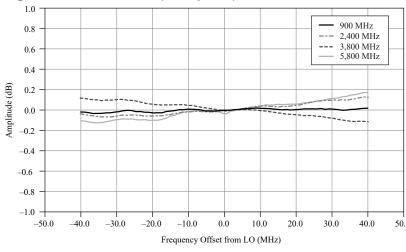



Figure 4. Measured Frequency Response, [8]-30 dBm Reference Level, Equalized

Average Noise Density

Table 5. Average Noise Density (dBm/Hz)

Contar Fraguency	Average Noise Level		
Center Frequency	-50 dBm Reference Level	-10 dBm Reference Level	
CE MILL to A CITE	-159	-145	
65 MHz to 4 GHz	-161, typical	-148, typical	
>4 GHz to 6 GHz	-156	-144	
	-158, typical	-146, typical	

Conditions: Input terminated with a 50 Ω load; 50 averages; RMS average noise level normalized to a 1 Hz noise bandwidth.

The -50 dBm reference level configuration has the inline preamplifier enabled, which represents the high sensitivity operation of the receive path.

Spurious Responses

Nonharmonic Spurs

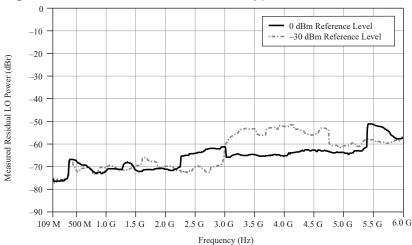
Table 6. Nonharmonic Spurs (dBc)

Frequency	<100 kHz Offset	≥100 kHz Offset	>1 MHz Offset
65 MHz to 3 GHz	<-55, typical	<-60	<-75
>3 GHz to 6 GHz	<-55, typical	<-55	<-70

Conditions: Reference level ≥-30 dBm. Measured with a single tone, -1 dBr, where dBr is referenced to the configured RF reference level.

LO Residual Power

Table 7. VSA LO Residual Power (dBr^[9])


Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
≤109 MHz	_	-62
	-67, typical	-67, typical

Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
>100 MHz +o 275 MHz	_	-58
>109 MHz to 375 MHz	-65, typical	-61, typical
>375 MHz to 1.5 GHz	_	-53
2375 MHZ (0 1.5 GHZ	-58, typical	-56, typical
	_	-47
>1.5 GHz to 2 GHz	-58, typical	-56, typical
>2 GHz to 3 GHz	_	-52
~2 GHZ (0 3 GHZ	-58, typical	-56, typical
>2 Cll= to 4 Cll=	_	-44
>3 GHz to 4 GHz	-49, typical	-47, typical
>4 CH2 to C CH2	_	-43
>4 GHz to 6 GHz	-48, typical	-46, typical

Conditions: Reference levels -30 dBm to +30 dBm; Measured at ADC.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the PXIe-5645 temperature drifts ± 5 °C from the temperature at the last self-calibration. For temperature changes >±5 °C from self-calibration, LO residual power is -35 dBr.

Figure 5. VSA LO Residual Power, $^{[10]}$ Typical

Residual Sideband Image

Table 8. VSA Residual Sideband Image, 80 MHz Bandwidth (dBc)

Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C	
≤109 MHz	_	-40	
	-60, typical	-50, typical	
> 100 MH= += F00 MH=	_	-40	
>109 MHz to 500 MHz	-50, typical	-45, typical	
>500 MHz to 3 GHz	_	-65	
	-75, typical	-70, typical	
>2 CII-+0 F CII-	_	-55	
>3 GHz to 5 GHz	-70, typical	-60, typical	
	_	-60	
>5 GHz to 6 GHz	-70, typical	-65, typical	

Conditions: Reference levels -30 dBm to +30 dBm.

This specification describes the maximum residual sideband image within an 80 MHz bandwidth at a given RF center frequency. Bandwidth is restricted to 20 MHz for LO frequencies ≤ 109 MHz.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as

measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the PXIe-5645 temperature drifts ± 5 °C from the temperature at the last self-calibration. For temperature changes >± 5 °C from self-calibration, residual image suppression is -40 dBc.

Figure 6. VSA Residual Sideband Image, [11] 0 dBm Reference Level, Typical

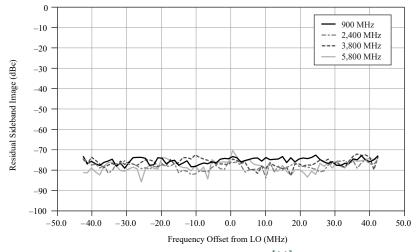
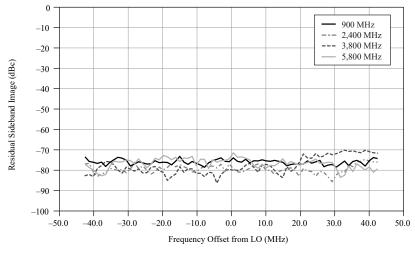



Figure 7. VSA Residual Sideband Image, [11] -30 dBm Reference Level, Typical

Third-Order Input Intermodulation

Table 9. Third-Order Input Intercept Point (IIP₃), -5 dBm Reference Level, Typical

Frequency Range	IIP ₃ (dBm)	
65 MHz to 1.5 GHz	19	
>1.5 GHz to 6 GHz	20	

Conditions: Two -10 dBm tones, 700 kHz apart at RF IN; reference level: -5 dBm<4 GHz, -2 dBm reference level otherwise; nominal noise floor: -148 dBm/Hz for -5 dBm reference level, -145 dBm/Hz for -2 dBm reference level.

Table 10. Third-Order Input Intercept Point (IIP3), -20 dBm Reference Level, Typical

Frequency Range	IIP ₃ (dBm)
65 MHz to 200 MHz	9
>200 MHz to 2 GHz	11
>2 GHz to 3.75 GHz	8
>3.75 GHz to 4.25 GHz	6
>4.25 GHz to 5 GHz	4
>5 GHz to 6 GHz	1

Conditions: Two -25 dBm tones, 700 kHz apart at RF IN; reference level: -20 dBm; nominal noise floor: -157 dBm/Hz.

Second-Order Input Intermodulation

Table 11. Second-Order Input Intercept Point (IIP₂), -2 dBm Reference Level, Typical $^{[12]}$

Frequency Range	IIP ₂ (dBm)
65 MHz to 1.5 GHz	67
>1.5 GHz to 4 GHz	58
>4 GHz to 6 GHz	52

RF Output

Power Range

Table 12. Power Range

Output Type	Frequency	Power Range		
CW	<4 GHz	Noise floor to +10 dBm, average power ^[13]	Noise floor to +15 dBm, average power, nominal	
CW	≥4 GHz	Noise floor to +7 dBm, average power ^[13]	Noise floor to +12 dBm, average power, nominal	
Modulated ^[14]	<4 GHz	Noise floor to +6 dBm, average power	_	
	≥4 GHz	Noise floor to +3 dBm, average power	_	

Output attenuator resolution	2 dB, nominal
Digital attenuation resolution ^[15]	0.1 dB or better

Related concepts:

• Refer to the Considering Average Power and Crest Factor topic of the NI RF Vector Signal Transceivers Help for more information about modulated signal power.

Amplitude Settling Time

0.1 dB of final value ^[16]	50 μs
---------------------------------------	-------

$0.5dB$ of final value $^{[17]}$, with LO retuned
--

Output Power Level Accuracy

Table 13. Output Power Level Accuracy (dB)

Camban	15 °C to 35 °C		0 °C to 55 °C	
Center Frequency	Self- Calibration°C±1°C	Self- Calibration°C ± 5 °C	Self- Calibration°C ± 1 °C	Self- Calibration°C ± 5 °C
65 MHz to <109 MHz	_	±0.70	_	±0.90
	_	±0.55 (95th percentile, ≈ 2σ)	_	±0.65 (95th percentile, ≈ 2σ)
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical
		±0.75		±0.90
109 MHz to <270 MHz ^[18]	±0.26, typical	±0.60 (95th percentile; ≈ 2σ)	±0.36, typical	±0.70 (95th percentile; ≈ 2σ)
		±0.45, typical		±0.55, typical
	_	±0.70	_	±0.90
270 MHz to <375 MHz	_	±0.55 (95th percentile, ≈ 2σ)	_	±0.65 (95th percentile, ≈ 2σ)
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical
	_	±0.75	_	±0.90
375 MHz to <2 GHz	_	±0.55 (95th percentile, ≈ 2σ)	_	±0.65 (95th percentile, ≈ 2σ)
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical
	_	±0.75	_	±0.90
2 GHz to <4 GHz	_	±0.60 (95th percentile, ≈ 2σ)	_	±0.70 (95th percentile, ≈ 2σ)
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical
4 GHz to 6	_	±1.00	_	±1.15
GHz	_	±0.80 (95th	_	±0.90 (95th

Contor	15 °C to 35 °C		0 °C to 55 °C	
Center Frequency	Self- Calibration°C ± 1 °C	Self- Calibration°C ± 5 °C	Self- Calibration°C ± 1 °C	Self- Calibration°C ± 5 °C
		percentile, ≈ 2σ)		percentile, ≈ 2σ)
	±0.28, typical	±0.40, typical	±0.38, typical	±0.60, typical

Conditions: CW average power -70 dBm to +10 dBm.

For power <-70 dBm, highly accurate generation can be achieved using digital attenuation, which relies on DAC linearity.

The absolute amplitude accuracy is measured at 3.75 MHz offset from the configured center frequency. The absolute amplitude accuracy measurements are made after the PXIe-5645 has settled.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

1.0 0.5 -0.5Frequency (GHz)

Figure 8. Relative Power Accuracy, -40 dBm to 10 dBm, 10 dB Steps, Typical

Frequency Response

Table 14. VSG Frequency Response (dB) (Amplitude, Equalized)

Output Frequency	Bandwidth	Self-Calibration °C ± 5 °C
≤109 MHz	20 MHz	±1.0, typical
. 100 MIL 1 275 MIL	20 MHz	±0.5
>109 MHz to 375 MHz	40 MHz	±1.0, typical
>375 MHz to 6 GHz	80 MHz	±0.5

Output Frequency	Bandwidth	Self-Calibration °C ± 5 °C
------------------	-----------	----------------------------

For this specification, frequency refers to the RF output frequency. This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

1.0 900 MHz 0.8 --- 2,400 MHz --- 3,800 MHz 0.6 5,800 MHz 0.4 Amplitude (dB) 0.2 0.0 -0.2-0.4-0.6-0.8-1.0-30.00.0 10.0 40.0 Frequency Offset from LO (MHz)

Figure 9. VSG Measured Frequency Response [19]

Output Noise Density

Table 15. Average Output Noise Level (dBm/Hz)

Contor Fraguency		Power Setting		
center Frequency	Center Frequency -30 dBm		10 dBm	
CE MILE to FOO MILE		_	-136	
65 MHz to 500 MHz	-168, typical	-150 , typical	-140, typical	
>500 MHz to 2.5 GHz	-168, typical	-150	-141	
>2.5 GHz to 3.5GHz	-168, typical	-149	-139	
>3.5 GHz to 6 GHz	-165, typical	-147	-136	

Conditions: Averages: 200 sweeps; baseband signal attenuation: -40 dB; noise measurement frequency offset: 4 MHz relative to output tone frequency.

Spurious Responses

Harmonics

Table 16. Second Harmonic Level (dBc)

Fundamental Frequency	23 °C ± 5 °C	0 °C to 55 °C
	-27	-24.8
65 MHz to 3.5 GHz	-29.5, typical	-27.2, typical
>3.5 GHz to 4.5 GHz	-26.3	-24
	-28.9, typical	-26.6, typical
	-28.9	-26.6
>4.5 GHz to 6 GHz	-33.3, typical	-31, typical

Conditions: Measured using 1 MHz baseband signal -1 dBFS; fundamental signal measured at +6 dBm CW; second harmonic levels nominally <-30 dBc for fundamental output levels of ≤5 dBm.

Note Higher order harmonic suppression is degraded in the range of 109 MHz to 270 MHz, and third harmonic performance is shown in the following figure. For frequencies outside the range of 109 MHz to 270 MHz, higher order harmonic distortion is equal to or better than the second harmonic level as specified in the previous table.

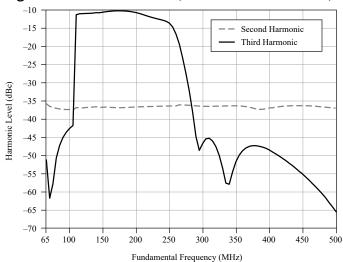


Figure 10. Harmonic Level, [20] 65 MHz to 500 MHz, Measured

Nonharmonic Spurs

Table 17. Nonharmonic Spurs (dBc)

Frequency	<100 kHz Offset	≥100 kHz Offset	>1 MHz Offset
65 MHz to 3 GHz	<-55, typical	<-62	<-75
>3 GHz to 6 GHz	<-55, typical	<-57	<-70
Conditions: Output full scale level ≥-30 dBm. Measured with a single tone at -1 dBFS.			

Third-Order Output Intermodulation

Table 18. Third-Order Output Intermodulation Distortion (IMD₃) (dBc), 0 dBm Tones

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
65 MHz to 1 GHz	-55, typical	-60, typical
>1 GHz to 3 GHz	-53, typical	-53, typical
>3 GHz to 5 GHz	-49, typical	-50, typical
>5 GHz to 6 GHz	-44, typical	-45, typical

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
Conditions: Two 0 dBm tones, 500 kHz apart at RF OUT.		
RF gain applied to achieve the desired output power per tone.		

Table 19. Third-Order Output Intermodulation Distortion (IMD₃) (dBc), -6 dBm Tones

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
	-50	-59
65 MHz to 1.5 GHz	-54, typical	-62, typical
>1 5 GHz to 2 5 GHz	-54	-59
>1.5 GHz to 3.5 GHz	-57, typical	-62, typical
	-50	-55
>3.5 GHz to 5 GHz	-53, typical	-58, typical
	-47	-51
>5 GHz to 6 GHz	-50, typical	-54, typical

Conditions: Two -6 dBm tones, 500 kHz apart at RF OUT.

RF gain applied to achieve the desired output power per tone.

Table 20. Third-Order Output Intermodulation Distortion (IMD₃) (dBc), -36 dBm Tones

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
CE MUZ to 200 MUZ	-52	-57
55 MHz to 200 MHz	-54, typical	-60, typical
. 200 MU	-52	-55
>200 MHz to 6 GHz	-54, typical	-58, typical

Conditions: Two -36 dBm tones, 500 kHz apart at RF OUT.

RF gain applied to achieve the desired output power per tone.

LO Residual Power

Table 21. VSG LO Residual Power (dBc)

Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
≤109 MHz	_	-50
Z109 MIUS	-57, typical	-55, typical
>100 MHz to 275 MHz	_	-42
>109 MHz to 375 MHz	-47, typical	-45, typical
>375 MHz to 1.6 GHz	_	-55
	-62, typical	-60, typical
1.0.011-4-2.011-	-	-54
1.6 GHz to 2 GHz	-60, typical	-58, typical
2611 1 2611	_	-47
2 GHz to 3 GHz	-53, typical	-51, typical

Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
	_	-52
3 GHz to 4 GHz	-57, typical	-55, typical
4611 4 5 611	_	-51
4 GHz to 5 GHz	-60, typical	-56, typical
F CUI- t- C CUI-	_	-47
5 GHz to 6 GHz	-56, typical	-52, typical

Conditions: Configured power levels -50 dBm to +10 dBm.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the PXIe-5645 temperature drifts ± 5 °C from the temperature at the last self-calibration. For temperature changes >± 5 °C from self-calibration, LO residual power is -40 dBc.

Figure 11. VSG LO Residual Power, [21] 109 MHz to 6 GHz, Typical

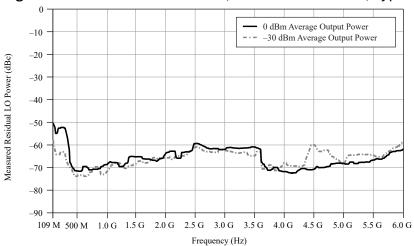


Table 22. VSG LO Residual Power (dBc), Low Power

Center Frequency	Self-Calibration °C ± 5 °C
<100 MU-	_
≤109 MHz	-49, typical

Center Frequency	Self-Calibration °C ± 5 °C
> 100 MHz to 275 MHz	-45
>109 MHz to 375 MHz	-50, typical
>275 MH= to 2 CH=	-55
>375 MHz to 2 GHz	-60, typical
>2 CII- to 2 CII-	-50
>2 GHz to 3 GHz	-53, typical
>3 GHz to 4 GHz	-55
23 GHZ (0 4 GHZ	-58, typical
NACUTE CUT	_
>4 GHz to 5 GHz	-40, typical
>5 GHz to 6 GHz	-43
~3 GUZ (0 0 GUZ	-45, typical

Conditions: Configured power levels < -50 dBm to -70 dBm.

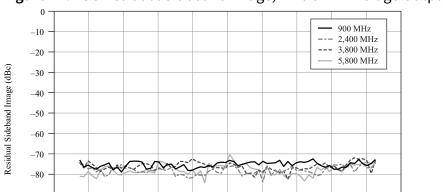
This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the PXIe-5645 temperature drifts \pm 5 °C from the temperature at the last self-calibration. For temperature changes > \pm 5 °C from self-calibration, LO residual power is -40 dBc.

Residual Sideband Image

Table 23. VSG Residual Sideband Image (dBc), 80 MHz Bandwidth

Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
<100 MU ₇	_	-40
≤109 MHz	-55, typical	-45, typical
> 100 MHz to 275 MHz	_	_
>109 MHz to 375 MHz	-45, typical	-40, typical


Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
>375 MHz to 2 GHz	_	-60
2375 MHZ tO 2 GHZ	-70, typical	-65, typical
>2 GHz to 4 GHz	_	-50
22 GHZ 10 4 GHZ	-65, typical	-55, typical
>4 Cll= to C Cll=	_	-40
>4 GHz to 6 GHz	-70, typical	-50, typical

Conditions: Configured power levels -50 dBm to +10 dBm.

This specification describes the maximum residual sideband image within an 80 MHz bandwidth at a given RF center frequency. Bandwidth is restricted to 20 MHz for LO frequencies ≤ 109 MHz.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the PXIe-5645 temperature drifts ± 5 °C from the temperature at the last self-calibration. For temperature changes >± 5 °C from self-calibration, residual image suppression is -40 dBc.

0.0

Frequency Offset from LO (MHz)

10.0

20.0

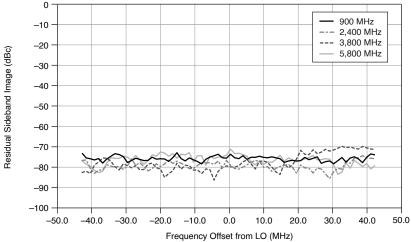
30.0

40.0

50.0

-50.0

-40.0


-30.0

-20.0

-10.0

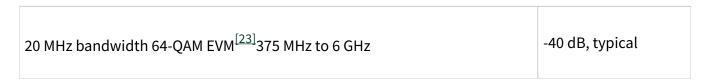
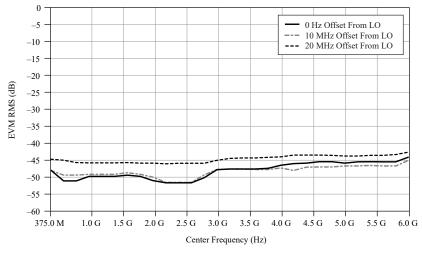
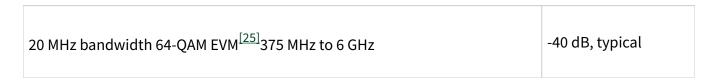

Figure 12. VSG Residual Sideband Image, [22] 0 dBm Average Output Power, Typical

Figure 13. VSG Residual Sideband Image, [22] -30 dBm Average Output Power, Typical



Error Vector Magnitude (EVM)


VSA EVM

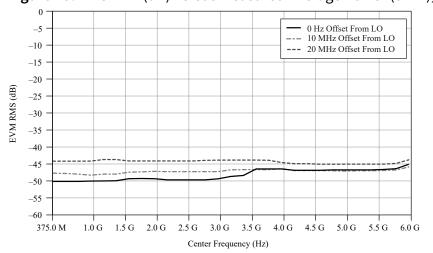


Figure 14. VSA Error Vector Magnitude, Typical [24]

VSG EVM

Figure 15. RMS EVM (dB) versus Measured Average Power (dBm), Typical ^[26]

I/Q Interface

Differential and Single-Ended Operation

The I/Q inputs and outputs of the PXIe-5645 support both single-ended and differential operation. This section explains some of the fundamental analog signal processing that occurs in the first stages of the I/Q receiver.

A differential signal system has a positive component (V_{INPUT}(CH+)) and a negative component (V_{INPUT}(CH-)). The differential signal can have a common-mode offset (V_{IN COM}) shared by both V_{INPUT}(CH+) and V_{INPUT}(CH-). The differential input signal is superimposed on the common-mode offset. The input circuitry rejects the input common-mode offset signal.

In a differential system, any noise present on both V_{INPUT}(CH+) and V_{INPUT}(CH-) gets rejected. Differential systems also double the dynamic range compared to a singleended system with the same voltage swing. The following figure illustrates the key concepts of differential offset and common-mode offset associated with a differential system.

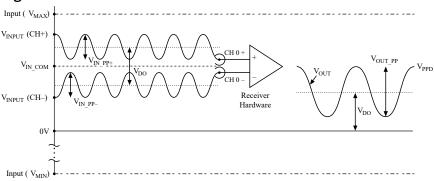


Figure 16. Definition of Common-Mode Offset and Differential Offset

where

- V_{IN PP+} represents the peak-to-peak amplitude of the positive AC input signal
- V_{IN PP-} represents the peak-to-peak amplitude of the negative AC input signal
- V_{DO} represents the differential offset voltage
- V_{IN COM} represents the common-mode offset voltage
- V_{OUT_PP} represents the peak-to-peak amplitude of the output signal

In the previous figure, the input common-mode voltage is not present after the first stage of the receiver system. The signal remaining at the output of the receiver circuitry is the signal of interest.

Note The differential signal can have an offset between $V_{\text{INPUT}}(\text{CH+})$ and $V_{\text{INPUT}}(\text{CH-})$. This is known as the **differential offset** and is retained by the receiver circuitry.

In an I/Q analyzer, a differential offset can occur because of LO leakage or harmonics. In the case of I/Q generation, a differential offset can cause spurs and magnitude error.

In a phase-balanced differential system, the peak-to-peak amplitude of the positive AC input signal (V_{IN_PP+}) is equal to the peak-to-peak amplitude of the negative AC input signal (V_{IN_PP-}). The AC peak-to-peak amplitude of the output signal is the sum of V_{IN_PP+} and V_{IN_PP-} . A more general definition for the output voltage regardless of phase is the difference between V_{IN_PP+} and V_{IN_PP-} described by the following equation:

V_{OUT} = (V_{INPUT}(CH+)) - (V_{INPUT}(CH-))

The common-mode offset, which represents the rejected component common to both signals, is described by the following equation:

$$V_{IN_COM} = [(V_{INPUT}(CH+)) + (V_{INPUT}(CH-))]/2$$

Related concepts:

• Refer to the NI RF Vector Signal Transceivers Help for more information about differential and single-ended operation on the NI 5645R.

I/Q Input

Vertical Range

Maximum input voltage			
Maximum functional voltage		± 2.5 V, typical	
Maximum input voltage ^[27] (damage)		±3 V	
Common-mode range ^[28] ±2 \		±2 V	
Differential voltage range			
Analog	0.032 V _{pk-pk} to 2 V _{pk-pk}		
Digital	<0.032 V _{pk-pk}		
Single-ended voltage range ^[29]			
Analog	0.032 V _{pk-pk} to 2 V _{pk-pk}		

Digital	<0.032 V _{pk-pk}	
Analog gain step range		36 dB
Gain step resolution		1 dB, typical

Absolute DC Gain Accuracy

Table 24. I/Q Input Absolute DC Gain Error

Temperature Range	Absolute Gain Error
Within ±5 °C of 23 °C	±1.75%
WILLIIII ±3 COI 23 C	±1.10%, typical
Outside 15 %C of 22%C	-0.033%/°C
Outside ±5 °C of 23°C	-0.027%/°C, typical

The accuracy of a measured DC signal using the 0.5 V differential input range is calculated using the following equations:

Gain accuracy for temperature within ± 5 °C of ambient 23 °C: $\pm (1.75\% \times 0.5 \text{ V}) = \pm 8.75 \text{ mV}$

Gain accuracy for a temperature at +20 °C above ambient 23 °C: ± 8.75 mV - $0.033\% \times 15$ °C \times (0.5) = +6.28 mV/-11.23 mV

Table 25. I/Q Input DC Offset Error (mV)

Temperature Range	I/Q Input DC Offset Error
23 °C ± 5 °C	±15
23 C±5 C	±6, typical
0 % 0 + 5 5 5 6 6	±20
0 °C to 55 °C	±10, typical

Absolute AC Gain Accuracy

Table 26. I/Q Input Absolute AC Gain Accuracy [30] (dB)

Input Range	23 °C ± 5 °C	0 °C to 55 °C
21/	0.42	0.47
2 V _{pk-pk}	0.1, typical	0.16, typical
0.5 V _{pk-pk}	0.41	0.47
	0.1, typical	0.16, typical
0.1 V _{pk-pk}	0.52	0.60
	0.1, typical	0.23, typical

Complex Equalized Bandwidth

Complex I/Q equalized bandwidth ^[31]		80 MHz
Bandwidth (equalization enabled or disabled)		
Baseband	40 MHz	
Complex baseband 80 MHz when used with an external I/Q modulator		

Note To operate the device in complex baseband mode, configure each channel with identical ranges and termination. Complex baseband mode requires two input signals that are 90° out of phase.

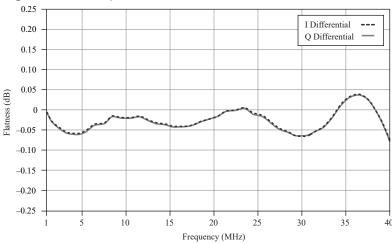

Passband Flatness

Table 27. I/Q Input Passband Flatness^[32] (dB)

I or Q Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
20 MH-	0.43	0.49
20 MHz	0.15, typical	0.21, typical

I or Q Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
40 MH-	0.52	0.58
40 MHz	0.21, typical	0.27, typical

Figure 17. I/Q Input Passband Flatness^[32]

Channel-to-Channel Gain Imbalance

Table 28. I/Q Input Gain Imbalance^[33] (dB)

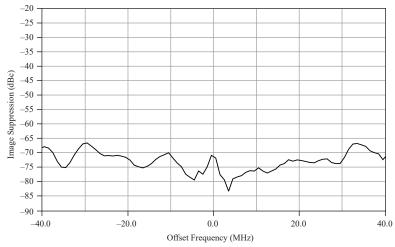
Complex Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
40 MHz	± 0.025	± 0.06
40 MHz	± 0.02, typical	± 0.04, typical
OO MILI~	± 0.045	± 0.075
80 MHz	± 0.03, typical	± 0.05, typical

Channel-to-Channel Phase Matching

Table 29. I/Q Input Phase Matching [34] (Degrees)

Complex Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
40 MHz	± 0.10	± 0.3
	± 0.06, typical	± 0.16, typical
80 MHz	± 0.16	± 0.5
	± 0.10, typical	± 0.35, typical

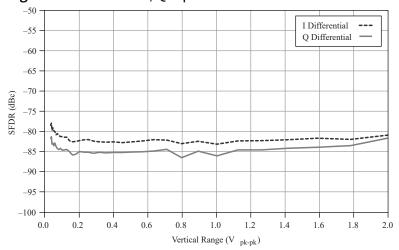
Image Suppression


Table 30. I/Q Input Image Suppression [35] (dBc)

Complex Bandwidth	23 °C ± 5 °C
40 MHz	-60
40 MINZ	-63, typical
00 MH=	-57
80 MHz	-60, typical

Image suppression is equivalent or better than specification at all frequency offsets within the specified bandwidth.

For ambient temperatures from 0 °C to 55 °C, image suppression is -50 dBc, typical over 80 MHz of complex bandwidth. External calibration is recommended to optimize performance for a specific ambient temperature outside of 23 °C ± 5 °C.

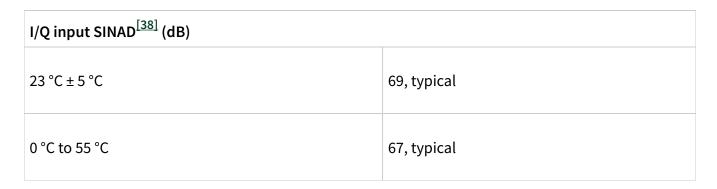
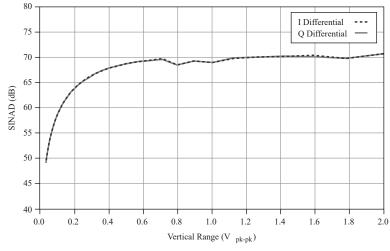

Figure 18. I/Q Input Image Suppression, [36] Nominal

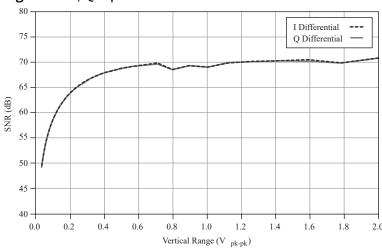
Spectral Characteristics

Spurious Free Dynamic Range (SFDR)

Figure 19. Measured I/Q Input $SFDR^{[37]}$

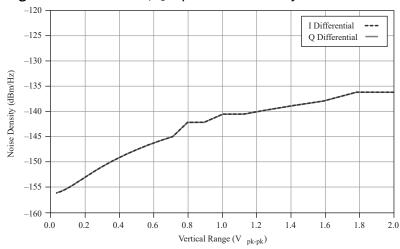
Signal to Noise and Distortion (SINAD)


Figure 20. Measured I/Q Input SINAD $^{[38]}$

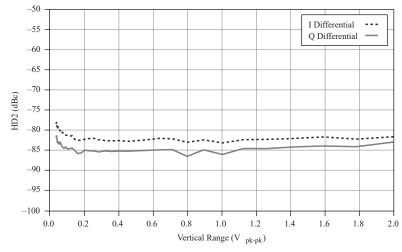
Signal-to-Noise Ratio (SNR)

I/Q input SNR ^[39] (dB)	
23 °C ± 5 °C	69, typical
0 °C to 55 °C	67, typical


Figure 21. I/Q Input SNR^[39]

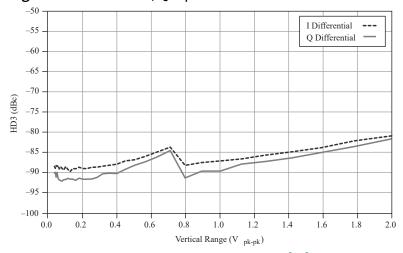
Average Noise Density

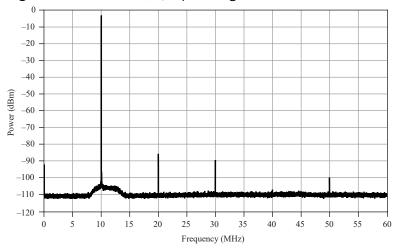
I/Q input average noise density ^[40] (dBm/Hz)		
23 °C ± 5 °C	-147, typical	
0 °C to 55 °C	-146, typical	


Figure 22. Measured I/Q Input Noise Density [40]

Harmonics

I/Q input second harmonic [41] (dBc)		
23 °C ± 5 °C	-76, typical	
0 °C to 55 °C	-75, typical	


Figure 23. Measured I/Q Input Second Harmonic [41]


I/Q input third harmonic $^{[41]}$ (dBc)

23 °C ± 5 °C	-80, typical
0 °C to 55 °C	-79, typical

Figure 24. Measured I/Q Input Third Harmonic [41]

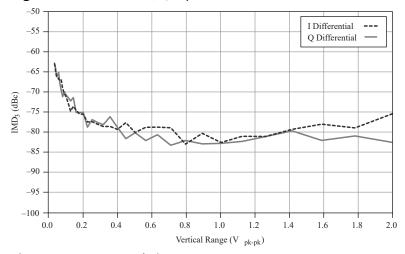
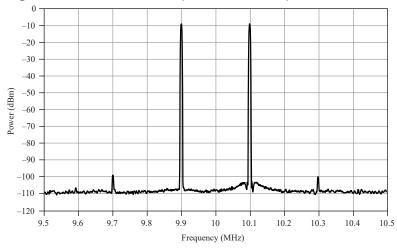
Figure 25. Measured I/Q Input Single Tone [42]

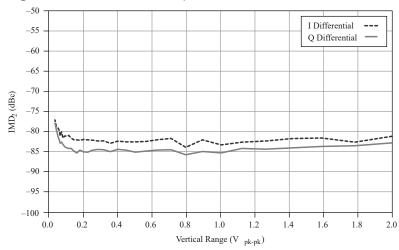
Third-Order Input Intermodulation

I/Q third-order input intermodulation ^[43] (IMD ₃) (dBc)		
23 °C ± 5 °C	-80, typical	

0 °C to 55 °C	-79, typical
---------------	--------------

Figure 26. Measured I/Q Input IMD₃^[43]


Figure 27. Measured I/Q Input Two-Tone Spectrum

Second-Order Input Intermodulation

I/Q second-order input intermodulation ^[44] (IMD ₂) (dBc)		
23 °C ± 5 °C	-77, typical	
0 °C to 55 °C	-75, typical	

Figure 28. Measured I/Q Input $IMD_2^{[44]}$

I/Q Output

Output Range^[45]

Maximum output voltage		±2.5 V
Common-mode range ^[46]		±2 V
Differential voltage range	2	
Analog	0.032V _{pk-pk} to 2 V _{pk-pk}	
Digital	< 0.032 V _{pk-pk}	
Single-ended voltage range ^[47]		
Analog	0.016 V _{pk-pk} to 1 V _{pk-pk}	
Digital	< 0.016 V _{pk-pk}	

Analog gain step range	36 dB
Gain step resolution	1 dB, typical

Absolute DC Gain Accuracy

Table 31. I/Q Output Absolute DC Gain $Error^{[48]}$

Temperature Range Absolute Gain Error	
Within ±5 °C of 23 °C	±1.12%
Within ±3 COI 23 C	±0.62%, typical
0 1 11 15 10 10010	-0.055%/°C
Outside ±5 °C of 23°C	-0.045%/°C, typical

The accuracy of a measured DC signal using the 0.5 V differential output range is calculated using the following equations:

Gain accuracy for temperature within ± 5 °C of ambient 23 °C: $\pm (1.12\% \times 0.5 \text{ V}) = \pm 5.6 \text{ mV}$

Gain accuracy for a temperature at +20 °C above ambient 23 °C: ± 5.6 mV - $0.055\% \times 15$ °C × (0.5) = +1.5 mV/-9.8 mV

Table 32. I/Q Output DC Offset Error [49] (mV)

Temperature Range	I/Q Output DC Offset Error
22.90 + 5.90	±3.6
23 °C ± 5 °C	±2.5, typical
0.001 55.00	±4.5
0 °C to 55 °C	±2.9, typical

Absolute AC Gain Accuracy

Table 33. I/Q Output Absolute AC Gain Accuracy^[50] (dB)

Output Range	23 °C ± 5 °C	0 °C to 55 °C
101/	0.48	0.53
1.0 V _{pk-pk}	0.13, typical	0.19, typical
0.5 V _{pk-pk}	0.47	0.52
	0.13, typical	0.19, typical
0.1 V _{pk-pk}	0.57	0.64
	0.15, typical	0.22, typical

Complex Equalized Bandwidth

Complex I/Q equalized bandwidth ^[51]		80 MHz
Bandwidth (equalization enabled)		
Baseband	aseband 40 MHz	
Complex baseband 80 MHz when used with an external I/Q modulator		

Note To operate the device in complex baseband mode, configure each channel with identical ranges and termination. Complex baseband mode requires two input signals that are 90° out of phase.

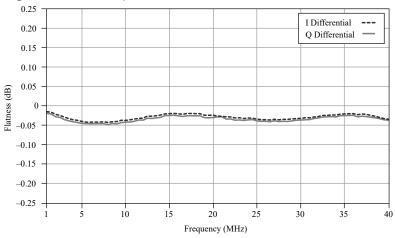

Passband Flatness

Table 34. I/Q Output Passband Flatness^[52] (dB)

I or Q Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
20 MHz	0.42	0.48
	0.13, typical	0.19, typical

I or Q Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
40 MU ~	0.43	0.49
40 MHz	0.14, typical	0.20, typical

Figure 29. I/Q Output Passband Flatness $^{[52]}$

Channel-to-Channel Gain Imbalance

Table 35. I/Q Output Gain Imbalance^[53] (dB)

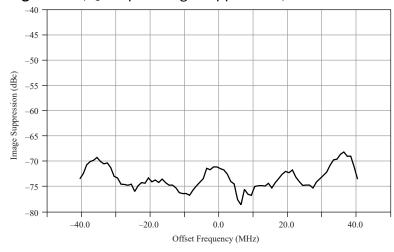
Complex Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
40 MHz	0.02	0.06
	0.015, typical	0.04, typical
80 MHz	0.025	0.065
	0.02, typical	0.045, typical

Channel-to-Channel Phase Matching

Table 36. I/Q Output Phase Matching^[54] (Degrees)

Complex Bandwidth	23 °C ± 5 °C	0 °C to 55 °C
40 MHz	0.1	0.15
	0.05, typical	0.1, typical
80 MHz	0.125	0.15
	0.08, typical	0.1, typical

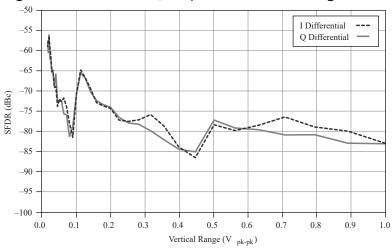
Image Suppression

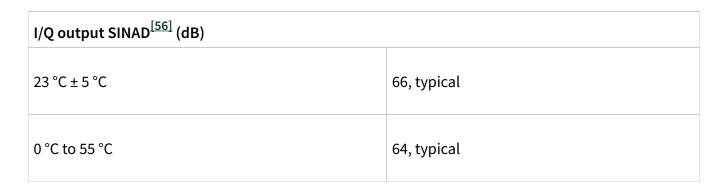

Table 37. I/Q Output Image Suppression [55] (dBc)

Complex Bandwidth	23 °C ± 5 °C
40 MHz	-62
40 MHz	-65, typical
00 MH=	-55
80 MHz	-60, typical

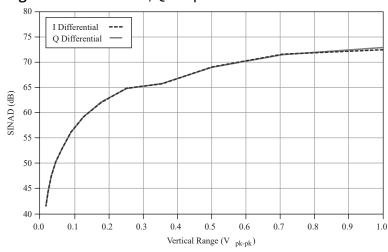
Image suppression is equivalent or better than specification at all frequency offsets within the specified bandwidth.

For ambient temperatures from 0 °C to 55 °C, image suppression is -50 dBc, typical over 80 MHz of complex bandwidth. External calibration is recommended to optimize performance for a specific ambient temperature outside of 23 °C ± 5 °C.

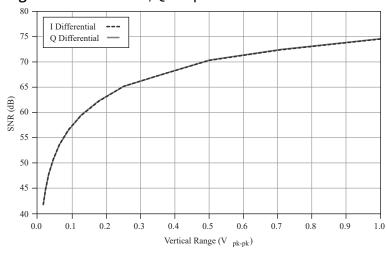

Figure 30. I/Q Output Image Suppression, Nominal


Spectral Characteristics

SFDR

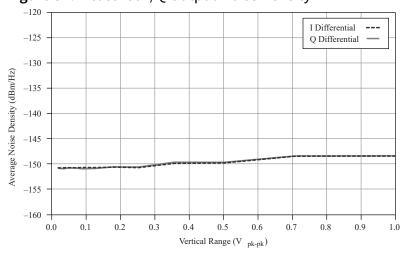

Figure 31. Measured I/Q Output SFDR, 9.9 MHz Signal

SINAD


Figure 32. Measured I/Q Output SINAD $^{[56]}$

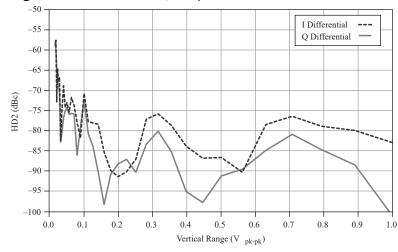
SNR

I/Q output SNR ^[57] (dB)	
23 °C ± 5 °C	66, typical
0 °C to 55 °C	64, typical


Figure 33. Measured I/Q Output $SNR^{[57]}$

Average Noise Density

I/Q output average noise density ^[58] (dBm/Hz)		
23 °C ± 5 °C	-149, typical	
0 °C to 55 °C	-147, typical	


Figure 34. Measured I/Q Output Noise Density^[58]

Harmonics

I/Q output second harmonic ^[59] (dBc)		
23 °C ± 5 °C	-75, typical	
0 °C to 55 °C	-73, typical	

Figure 35. Measured I/Q Output Second Harmonic [59]

I/Q output third harmonic [59] (dBc)

23 °C ± 5 °C	-84, typical
0 °C to 55 °C	-83, typical

Figure 36. Measured I/Q Output Third Harmonic [59]

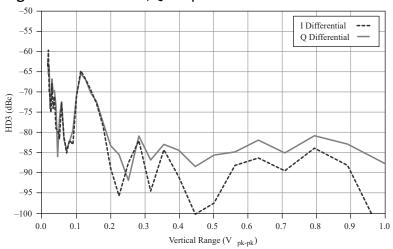
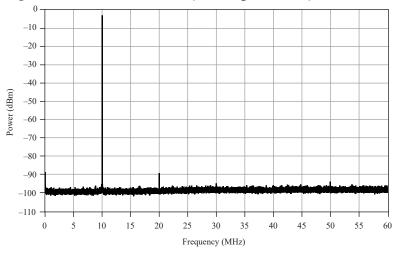



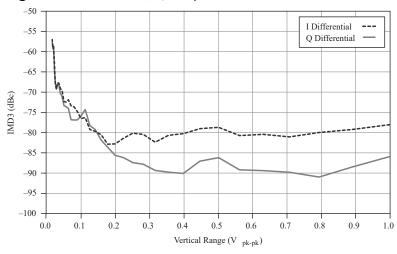
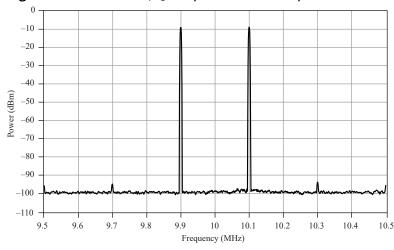
Figure 37. Measured I/Q Output Single Tone Spectrum

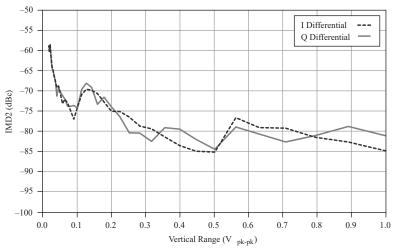
Third-Order Output Intermodulation

I/Q third-order output intermodulation ^[60] (IMD ₃) (dBc)		
23 °C ± 5 °C	-80, typical	

0 °C to 55 °C	-75, typical
---------------	--------------

Figure 38. Measured I/Q Output IMD₃^[60]


Figure 39. Measured I/Q Output Two-Tone Spectrum

Second-Order Output Intermodulation

I/Q second-order output intermodulation ^[61] (IMD ₂) (dBc)		
23 °C ± 5 °C	-80, typical	
0 °C to 55 °C	-75, typical	

Figure 40. I/Q Output IMD₂^[61]

Application-Specific Modulation Quality

Typical performance assumes the PXIe-5645 is operating within ± 5 °C of the previous self-calibration temperature, and that the ambient temperature is 0 °C to 55 °C.

RF Application-Specific Modulation Quality

WLAN 802.11ac

OFDM ^[62]	-45 EVM (rms) dB, typical
----------------------	---------------------------

WLAN 802.11n

Table 38. 802.11n OFDM EVM (rms) (dB), Typical

Frequency	20 MHz Bandwidth	40 MHz Bandwidth
2,412 MHz	-50	-50
5,000 MHz	-48	-46

Conditions: RF OUT loopback to RF IN; average power: -10 dBm; reference level: auto-leveled based on real-time average power measurement; 20 packets; 3/4 coding rate; 64 QAM.

WLAN 802.11a/g/j/p

Table 39. 802.11a/g/j/p OFDM EVM (rms) (dB), Typical

Frequency	20 MHz Bandwidth
2,412 MHz	-53
5,000 MHz	-50

Conditions: RF OUT loopback to RF IN; average power: -10 dBm; reference level: auto-leveled based on real-time average power measurement; 20 packets; 3/4 coding rate; 64 QAM.

WLAN 802.11g

Table 40. 802.11g DSSS-OFDM EVM (rms) (dB), Typical

Frequency	20 MHz Bandwidth
2,412 MHz	-53
5,000 MHz	-50

Conditions: RF OUT loopback to RF IN; average power: -10 dBm; reference level: auto-leveled based on real-time average power measurement; 20 packets; 3/4 coding rate; 64 QAM.

WLAN 802.11b/g

DSSS ^[63]	-48 EVM (rms) dB, typical
----------------------	---------------------------

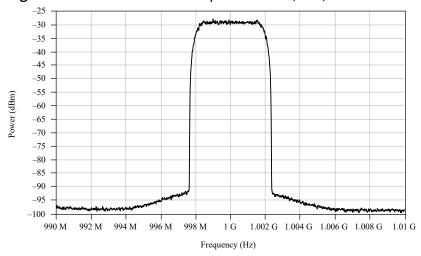

LTE

Table 41. SC-FDMA^[64] (Uplink FDD) EVM (rms) (dB), Typical

Frequency	5 MHz Bandwidth	10 MHz Bandwidth	20 MHz Bandwidth
700 MHz	-56	-56	-54
900 MHz	-55	-55	-53
1,430 MHz	-54	-54	-53
1,750 MHz	-51	-50	-50
1,900 MHz	-51	-50	-50
2,500 MHz	-50	-49	-49

WCDMA

Figure 41. WCDMA Measured Spectrum [65] (ACP)

I/Q Baseband Application-Specific Modulation Quality

WLAN 802.11ac

OFDM ^[66]	-53 EVM (rms) dB, nominal
----------------------	---------------------------

WLAN 802.11n

OFDM ^[67] -54 EVM (rms) dB, nominal	
--	--

WLAN 802.11a/g/j/p

WLAN 802.11g

DSSS-OFDM ^[69] -56 EVI	И (rms) dB, nominal
-----------------------------------	---------------------

WLAN 802.11b/g

DSSS ^[70]	-51 EVM (rms) dB, nominal
----------------------	---------------------------

LTE

SC-FDMA ^[71] (Uplink FDD) -56 channel EVM (rms) dB, nominal
--

Baseband Characteristics

Analog-to-digital converters (ADCs)		
Resolution	16 bits	
Sample rate ^[72]	120 MS/s	
I/Q data rate ^[73]	1.84 kS/s to 120 MS/s	
Digital-to-analog converters (DACs)		
Resolution	16 bits	
Sample rate ^[74]	120 MS/s	
I/Q data rate ^[75]	1.84 kS/s to 120 MS/s	

Onboard FPGA

FPGA	Xilinx Virtex-6 LX195T
LUTs	124,800
Flip-flops	249,600
DSP48 slices	640
Embedded block RAM	12,384 kbits
Data transfers	DMA, interrupts, programmed I/O
Number of DMA channels	16

Onboard DRAM

Memory size	2 banks, 256 MB per bank
Theoretical maximum data rate	2.1 GB/s per bank

Onboard SRAM

Memory size	2 MB
-------------	------

Maximum data rate (read)	40 MB/s
Maximum data rate (write)	36 MB/s

Front Panel I/O

RFIN

Connector	SMA (female)
Input impedance	50 Ω, nominal, AC coupled
Maximum DC input voltage without damage	8 V
Absolute maximum input power ^[76]	+33 dBm (CW RMS)

Input Return Loss (Voltage Standing Wave Ratio (VSWR))

Table 42. Input Return Loss (dB) (VSWR)

Frequency	Typical	
109 MHz ≤ f < 2.4 GHz	15.5 (1.40:1)	
2.4 GHz ≤ f < 4 GHz	12.7 (1.60:1)	
4 GHz ≤ f ≤ 6 GHz 11.0 (1.78:1)		
Return loss for frequencies <109 MHz is typically better than 14 dB (VSWR <1.5:1).		

RF OUT

Connector		SMA (female)
Output impedance		50 Ω , nominal, AC coupled
Absolute maximum reverse power ^[77]		
<4 GHz	+33 dBm (CW RMS)	
≥4 GHz	+30 dBm (CW RMS)	

Output Return Loss (VSWR)

Table 43. Output Return Loss (dB) (VSWR)

Frequency	Typical		
109 MHz ≤ f < 2 GHz	19.0 (1.25:1)		
2 GHz ≤ f < 5 GHz	14.0 (1.50:1)		
5 GHz ≤ f ≤ 6 GHz 11.0 (1.78:1)			
Return loss for frequencies < 109 MHz is typically better than 20 dB (VSWR < 1.22:1).			

CAL IN, CAL OUT

Connector	SMA (female)
Impedance	50 Ω, nominal

Caution Do not disconnect the cable that connects CAL IN to CAL OUT.

Removing the cable from or tampering with the CAL IN or CAL OUT front panel connectors voids the product calibration and specifications are no longer warranted.

LO OUT (RF IN 0 and RF OUT 0)

Connectors	SMA (female)			
Frequency range ^[78]	65 MHz to 6 GHz			
Power				
LO OUT (RF IN 0) 65 MHz to 6 GHz		0 dBm ±2 dB, typical		
LO OUT (RF OUT 0)				
65 MHz to 3.6 GHz	dz to 3.6 GHz 0 dBm ±2		Bm ±2 dB, typical	
≥3.6 GHz to 6 GHz	3 dBn		3 dBm ±2 dB, typical	
Output power resolution	0.25 dB, nominal			
Output impedance	50Ω , nominal, AC coupled			
Output return loss	>11.0 dB (VSWR <1.8:1), typical			
Output isolation (state: disabled)				
<2.5 GHz tuned LO		-45 dBc, nominal		

≥2.5 GHz tuned LO	-35 dBc, nominal

LO IN (RF IN 0 and RF OUT 0)

Connectors	SMA (female)	
Frequency range ^[79]	65 MHz to 6 GHz	
Expected input power		
LO IN (RF IN 0) 65 MHz to 6 GHz		0 dBm ±3 dB, nominal
LO IN (RF OUT 0)		
65 MHz to 3.6 GHz	0 dBm ±3 dB, nominal	
≥3.6 GHz to 6 GHz	3 dBm ±1 dB, nominal	
Input impedance	50 Ω , nominal, AC coupled	
Input return loss	>11.7 dB (VSWR <1.7:1), typical	
Absolute maximum power	+15 dBm	
Maximum DC voltage	±5 VDC	

I/Q IN 0

Connectors	MCX	
DC input resistance		
Single-ended	50 Ω, nominal	
Differential	100 Ω , nominal	
Input coupling, per terminal	DC	
Input return loss ≤ 40 MHz	>-28 dB, nominal	
Input type	Single-ended ^[80] , differential	
Number of channels	2	

I/Q OUT 0

Connectors	MCX	
DC output resistance		
Single-ended	50 Ω, nominal	
Differential	100 Ω, nominal	

Output coupling, per terminal	DC
Output return loss ≤ 40 MHz	>-28 dB, nominal
Output type	Single-ended ^[81] , differential
Number of channels	2

REF IN

Connector		SMA (female)
Frequency		10 MHz
Tolerance ^[82]		±10 × 10 ⁻⁶
Amplitude		
Square	$0.7V_{pk-pk}$ to $5.0V_{pk-pk}$ into 50Ω , typical	
Sine ^[83]	$1.4V_{pk-pk}$ to $5.0V_{pk-pk}$ into 50Ω , typical	
Input impedance 50Ω		50 Ω, nominal
Coupling		AC

REF OUT

Connector	SMA (female)	
Frequency	1	
Reference Clock ^[84]		10 MHz, nominal
Sample Clock		120 MHz, nominal
Amplitude	1.65 Vpk-pk into 50 Ω , nominal	
Output impedance	50 Ω , nominal	
Coupling	AC	

PFI 0

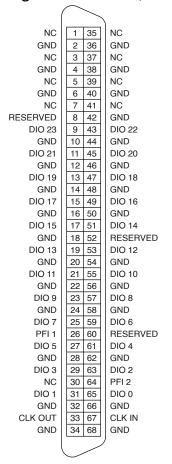
Connector	ector	
Voltage levels ^[85]		
Absolute maximum input range	-0.5 V to 5	.5 V
VIL	0.8 V	
VIH	2.0 V	

V _{OL}	0.2 V with	100 μA load
Vон	2.9 V with	100 μA load
Input impedance		10 kΩ, nominal
Output impedance		50 Ω, nominal
Maximum DC drive strength		24 mA
Minimum required direction change latency [86]		48 ns + 1 clock cycle

DIGITAL I/O

Connector	VHDCI
-----------	-------

Table 44. DIGITAL I/O Signal Characteristics


Signal	Direction	Port Width
DIO <2320>	Bidirectional, per port	4
DIO <1916>	Bidirectional, per port	4
DIO <1512>	Bidirectional, per port	4
DIO <118>	Bidirectional, per port	4
DIO <74>	Bidirectional, per port	4
DIO <30>	Bidirectional, per port	4
PFI 1	Bidirectional	1
PFI 2	Bidirectional	1

Signal	Direction	Port Width
Clock In	Input	1
Clock Out	Output	1

Voltage levels ^[87]			
Absolute maximum input range		-0.5 V to 4.5 V	
V _{IL}		0.8 V	
ViH		2.0 V	
V _{OL}		0.2 V with 100 μA load	
V _{OH}		2.9 V with 100 μA load	
Input impedance		1	
DIO <230>, CLK IN 10 kΩ, nominal		nal	
PFI 1, PFI 2 100 kΩ pull up, nomina		p, nominal	
Output impedance		50 Ω, nominal	
Maximum DC drive strength			12 mA
Minimum required direction change latency ^[88]		48 ns + 1 clock cycle	

Maximum toggle rate	125 MHz, typical
---------------------	------------------

Figure 42. DIGITAL I/O VHDCI Connector

Power Requirements

Table 45. Power Requirements

Voltage (V _{DC})	Typical Current (A)	Maximum Current (A)
+3.3	4.9	5.3
+12	3.3	4.2

Power is 56 W, typical. Consumption is from both PXI Express backplane power connectors.

Calibration

Interv	al	1 year

Note For the two-year calibration interval, add 0.2 dB to one-year specifications for <u>Absolute Amplitude Accuracy</u>, RF input <u>Frequency Response</u>, <u>Output Power Level Accuracy</u>, and RF output <u>Frequency Response</u>.

Physical Characteristics

PXIe-5645	3U, four slot, PXI Express module
module	8.1 cm × 12.9 cm × 21.1 cm3.2 in × 5.6 in × 8.3 in
Weight	1,758 g (62.0 oz)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C

ity range 10% to 90%, noncondensing

Storage Environment

Ambient temperature range	-40 °C to 71 °C
Relative humidity range	5% to 95%, noncondensing

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse	
Random vibration		
Operating	5 Hz to 500 Hz, 0.3 g _{rms}	
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms}	

Compliance and Certifications Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国RoHS)

• ◎ ⑤ ● 中国RoHS — NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/ rohs chinao (For information about China RoHS compliance, go to ni.com/ environment/rohs china.)