
Measurement
Plug-Ins

2025-03-13

Contents Contents
Measurement Plug-In Overview . 4

Measurement Plug-In Architecture . 5
Understanding Measurement Plug-In Behavior . 6

New Features and Changes . 8
Installing Measurement Plug-In . 12

Python Measurement Development Dependencies . 12
LabVIEW Measurement Development Dependencies . 13

Developing a Measurement Plug-In with Python . 15
Python Measurement Plug-In Generator Parameters . 21
Python Measurement Plug-In File Descriptions . 22

Developing a Measurement Plug-In Client with Python . 23
Developing a Measurement Plug-In with LabVIEW . 26

LabVIEW Measurement Plug-In Project File Descriptions . 31
LabVIEW Measurement Plug-In Details . 32

Developing a Measurement Plug-In Client with LabVIEW . 34
Developing a User Interface for a Measurement Plug-In . 37
Creating and Using Pin Maps . 40

Pin Map Contents . 41
Editing Pin Maps . 42
Driver Instrument Reference . 44

Running a Measurement from InstrumentStudio . 49
Running a Measurement from TestStand . 51

Using Driver Sessions in TestStand . 52
Monitoring or Debugging Measurements . 56
Plug-In Library . 59

Using a Plug-In Library . 62
Plug-In Versioning . 64

Using Measurements in Custom Applications . 66
Measurement Development and Usage Best Practices . 67
Supported Datatypes . 70
API Reference . 71
Measurement Plug-In Architecture and Data Flow . 72

Measurement Plug-Ins

2 ni.com

Understanding the Discovery Service . 72
Understanding the gRPC Device Server Activation Service . 73
Understanding the Driver Session Management Service . 74
Understanding the Pin Map Service . 79

Measurement Plug-Ins

© National Instruments 3

Measurement Plug-InMeasurement Plug-In Overview Overview
Measurement Plug-In helps you create reusable measurements for any supported
device. Use Python or LabVIEW to generate a new measurement plug-in and define
your measurement logic. Deploy your measurement plug-in to perform interactive
validation in InstrumentStudio and automated testing in TestStand.

Measurement Plug-In Workflow

This documentation supports developing measurement plug-ins and using
measurements in low-code applications.

• Develop reusable measurement plug-ins:
◦ Develop measurement logic in your preferred software language.

Measurement Plug-In services help to manage driver sessions, allowing you to
create software measurements that emphasize intuitive interaction with a
physical DUT.

◦ Validate measurement behavior from your development environment or
interactively in InstrumentStudio.

◦ Use LabVIEW or the Measurement Plug-In UI Editor to create a graphical user
interface that loads when you open your measurement in InstrumentStudio.

◦ Deploy measurement plug-ins so that they are statically registered with the
Measurement Plug-In discovery service and available in TestStand and
InstrumentStudio.

• Use measurements interactively:
◦ Use InstrumentStudio to run a measurement and perform hardware validation

via a graphical UI.
◦ Open a measurement in InstrumentStudio from TestStand to debug a

measurement step in your automated sequence.
• Use measurements in automated testing:

◦ Use TestStand to run measurements as part of an automated test sequence.
◦ Register a pin map so that the Measurement Plug-In session management

service can initialize and manage driver sessions for NI drivers.
◦ Initialize and manage instrument driver sessions efficiently with multiple

measurements in a single automated test sequence.

Measurement Plug-In Overview

4 ni.com

Related concepts:

• Understanding Measurement Plug-In Behavior

Related reference:

• Measurement Plug-In Architecture

Measurement Plug-InMeasurement Plug-In Architecture Architecture
.

Measurement Logic User-Defined Measurement Plug-Ins

Shared Services

Discovery Service
Graphical User Interface

Plug-In
Metadata

Instrument Studio

2

3

4

1

Measurement Step

Measurement Step

Measurement Step

TestStand

5

6

1. Use Python or LabVIEW to generate a new measurement plug-in and define your
measurement logic.

2. Create a graphical UI for users who interact with your measurement in
InstrumentStudio.

3. Deploy your measurement plug-in with a few simple steps. The
Measurement Plug-In discovery service registers your measurement so that you
can use it in supported applications.

4. Use InstrumentStudio to open and run measurements interactively for debugging
or validation.

5. Use TestStand to run measurements automatically as part of a test sequence.
6. Measurement Plug-In microservices provide:

◦ Uniform behavior for all measurements, regardless of source language.
◦ The ability to monitor measurements when they run from a separate

application.
◦ The ability to transfer measurement configuration values between supported

applications.
◦ Support for pin maps, which allow you to associate device I/O with user-

Measurement Plug-In Overview

© National Instruments 5

defined pin names and site names.
◦ The ability to configure and initialize instrument driver sessions based on

information stored in a pin map.

Related tasks:

• Using Measurements in Custom Applications

Understanding Measurement Plug-In Behavior Understanding Measurement Plug-In Behavior
A measurement plug-in consists of measurement logic, metadata, and an optional UI.
A measurement plug-in runs as a service. The measurement logic does not execute
when your measurement service starts.

A measurement plug-in can be deployed and statically registered with the
Measurement Plug-In discovery service. The Measurement Plug-In discovery service
makes registered measurement plug-ins visible in supported applications.

To execute your measurement logic, do one of the following:

• Run your measurement logic from your measurement development environment.
• Run your measurement interactively by clicking Run on the measurement UI

toolbar in InstrumentStudio or the Measurement Plug-In UI Editor.
• Run an automated test sequence that includes your measurement as a step using

TestStand.

When you execute your measurement logic, the measurement service is called and
your configuration values are passed to the measurement service. When the
measurement logic completes execution, the measurement service returns
measurement data.

Note While a measurement service runs, there are multiple ways to execute
the associated measurement logic. The measurement UI toolbar indicates
where active measurement data originates.

Measurement Plug-In Overview

6 ni.com

Pin Maps and Hardware-Based Measurements

Pin maps associate physical device I/O with user-defined pin names and site names.
For Measurement Plug-In measurement plug-ins, a pin map allows you to address
device I/O while Measurement Plug-In services use information from the pin map to
simplify driver session management. Pin maps enhance the flexibility of your
measurement and allow the measurement user to focus on the DUT in a more intuitive
way.

Use InstrumentStudio to create a pin map for your application. For more information
about how pin maps are used, refer to Understanding the Driver Session
Management Service and Understanding the Pin Map Service.

Related tasks:

• Running a Measurement from InstrumentStudio
• Running a Measurement from TestStand
• Using Measurements in Custom Applications

Related information:

• Statically Register a Measurement Service

Note A pin map is not required to take measurements.

Measurement Plug-In Overview

© National Instruments 7

https://www.ni.com/docs/bundle/measurementlink/page/python-measurements.html#GUID-F6F004B4-52FF-411B-9B5E-715DE38D739B__GUID-923B4BB1-8508-4D2E-B8F3-FAC7CDBDEE26

New Features and Changes New Features and Changes
Learn about updates—including new features and behavior changes. Product features
on github may update more frequently than indicated in these notes.

2024 Q4

New Features

• Added support for measurement plug-in versioning.
• Added support for displaying a link to measurement plug-in documentation in

InstrumentStudio and TestStand.
• Added support for plug-in client creation.

Related concepts:

• Plug-In Versioning

Related reference:

• Developing a Measurement Plug-In Client with LabVIEW
• Developing a Measurement Plug-In Client with Python

2024 Q3

Changes

• MeasurementLink technology will now be included as measurement plug-ins for
use with other NI products.

New Features

Pin maps are no longer required to take measurements.

New Features and Changes

8 ni.com

InstrumentStudio

Added support for using measurement plug-ins in InstrumentStudio Professional. See
Measurement Plug-Ins in the InstrumentStudio manual for more information.

MeasurementLink 2024 Q2

MeasurementLink 2024 Q2 includes the following new features and changes:

• Return multiplexer (MUX) information from the session manager reserve function
(python).

• Add support for pin and relay groups to the session manager service and session
manager APIs (LabVIEW and python).

MeasurementLink 2024 Q1

MeasurementLink 2024 Q1 includes the following new features and changes:

• Additional LabVIEW Vis and Python methods to simplify session management.
• New Update Pin Map custom step in TestStand. The Update Pin Map step simplifies

registering a pin map in TestStand.
• Support for XYGraph output data type for MeasurementLink UIs.
• VISA gRPC and session support.

MeasurementLink 2023 Q4

MeasurementLink 2023 Q4 includes the following new features and changes:

• Support for TestStand 2023.
• Support for optional annotations in the Service Configuration File for description,

collection and tags. These are used for better measurement organization in
InstrumentStudio, TestStand and the MeasurementLink UI Editor.

• Support for ring controls in the measurement UI.
• Allow running measurements continuously in InstrumentStudio (as a

MeasurementLink preview feature).

New Features and Changes

© National Instruments 9

MeasurementLink 2023 Q3

MeasurementLink 2023 Q3 includes the following new features and changes:

• Support for gRPC connections in the NI-DAQmx Python API.
• Support for updating the interactive measurement UI progressively while the

measurement runs. This update does not change measurement step behavior in
TestStand.

• Support for enum data type and controls in measurements.

MeasurementLink 2023 Q2

MeasurementLink 2023 Q2 includes the following new features and changes:

• Support for native gRPC interfaces in LabVIEW for the following drivers:
◦ NI-Digital Pattern Driver
◦ NI-DMM
◦ NI-FGEN
◦ NI-SCOPE

MeasurementLink 2023 Q1

Initial release.

The following table indicates the NI driver software (and available interfaces)
supported in the first MeasurementLink release. An updated list of supported driver
software can be found elsewhere in this manual.

Supported NI driver
software

Support for native gRPC
interface (Python)

Support for native gRPC interface
(LabVIEW)

NI-DAQmx – –

NI-DCPower ✔ ✔

NI-Digital Pattern Driver ✔ –

NI-DMM ✔ –

NI-FGEN ✔ –

New Features and Changes

10 ni.com

Supported NI driver
software

Support for native gRPC
interface (Python)

Support for native gRPC interface
(LabVIEW)

NI-SCOPE ✔ –

NI-SWITCH ✔ –

NI-VISA (GPIB, serial, LXI
interfaces) – –

The following list reflects the data types supported in the first MeasurementLink
release. An updated list of supported data types can be found elsewhere in this
manual.

• Signed integers
◦ Int32
◦ Int64

• Unsigned integers
◦ UInt32
◦ UInt64

• Floating-point numbers
◦ Float (32-bit floating-point number)
◦ Double (64-bit floating-point number)

• Boolean
• String

◦ Pin (string type specialization)
◦ Path (string type specialization)

• 1D array (supported for all base datatypes and type specializations)

New Features and Changes

© National Instruments 11

Installing Measurement Plug-In Installing Measurement Plug-In
To install Measurement Plug-In:

1. Install InstrumentStudio. The InstrumentStudio version must match your
Measurement Plug-In version.

2. Install TestStand 2021 or later if you will use measurements in automated test
applications. Measurement Plug-In is only compatible with 64-bit versions of
TestStand.

3. Install Measurement Plug-In.

4. To develop measurement plug-ins, install dependencies for your software
language:
◦ Install the Python Measurement Development Dependencies
◦ Install the LabVIEW Measurement Development Dependencies

Examples

Measurement Plug-In provides example measurements for each supported software
language.

Examples are available as an asset within the Measurement Plug-In releases. To
download and install examples, use the following links along with the documentation
located in the associated repository.

• Python examples: https://github.com/ni/measurement-plugin-python
• LabVIEW examples: https://github.com/ni/measurement-plugin-labview

Python Measurement Development Dependencies Python Measurement Development Dependencies
You must install this software to develop Measurement Plug-In measurements using
Python.

Note The Measurement Plug-In UI Editor is an optional feature that
developers can use to create a measurement UI without using LabVIEW.

Installing Measurement Plug-In

12 ni.com

https://github.com/ni/measurement-plugin-python
https://github.com/ni/measurement-plugin-labview

1. Ensure that Python 3.8 or later is installed.
2. Install the measurement service package:

python -m pip install ni_measurement_plugin_sdk

This will also install all remaining Python dependencies.

LabVIEW Measurement Development Dependencies LabVIEW Measurement Development Dependencies
You must install LabVIEW add-on packages to develop Measurement Plug-In
measurements using LabVIEW. The required packages are available from vipm.io.

Complete the following steps to install LabVIEW add-on packages using vipm.io.

1. Navigate to the Measurement Plug-In package list on the vipm.io website. You can
also search for Measurement Plug-In to see a list of available packages.

2. On the vipm.io website, click the Measurement Plug-In add-on. The add-on page
opens.

3. Click Install with VIPM. If prompted, allow vipm.io to open the link with the
associated app. VIPM opens and displays the Measurement Plug-In Generator add-
on.

4. In the VIPM application, click Install. VIPM displays a list of pending actions.

5. Click Continue.
6. If you install dependencies, VIPM will prompt you to agree to download additional

software. Click I Agree to continue.
7. LabVIEW launches and VIPM displays add-on installation activity. When installation

is complete, click Finish in VIPM.

Add-on installation is complete. Close VIPM and use LabVIEW to develop your
measurement.

Note Installing the Measurement Plug-In Generator add-on will also
install the Measurement Plug-In Service add-on as a dependency.

Note By default, VIPM installs dependencies for the selected add-on.

Installing Measurement Plug-In

© National Instruments 13

Related information:

• Accessing LabVIEW Add-ons with the VI Package Manager (VIPM) Software
(Windows)

• Measurement Plug-Ins Package List on vipm.io

Installing Measurement Plug-In

14 ni.com

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x1r4CAA&l=en-US
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000x1r4CAA&l=en-US
https://www.vipm.io/search/?q=Measurement+Plug-In

Developing a Measurement Plug-In with Developing a Measurement Plug-In with
Python Python
This topic outlines the required steps for developing a measurement plug-in in Python.
Use the Python examples in github and the remaining topics in this manual to
understand how to develop a working measurement for your application.

Related reference:

• Python Measurement Development Dependencies

Related information:

• Measurement Plug-In SDK Examples for Python on github

Creating a Python Measurement Plug-In

Complete the following steps to generate a new measurement plug-in with Python.
Ensure that you have installed the Python development dependencies before you
begin.

1. Open a command prompt.
2. Run ni_measurement_plugin_generator measurement name --

directory-out path to create a new measurement service.

Note If you are developing a measurement plug-in for use with TestStand,
review the Running a Measurement from TestStand topic to
understand additional design considerations.

Note If you omit the --directory-out parameter the new
measurement plug-in folder appears in the current directory.

Note You can specify additional parameters. View the Python

Developing a Measurement Plug-In with Python

© National Instruments 15

https://github.com/ni/measurementlink-python/releases

A folder containing the new measurement plug-in appears in the specified directory.

Configuring a Python Measurement Plug-In

You must modify a generated Python measurement plug-in to meet your specific
needs.

1. Navigate to your measurement folder and open measurement.py. This file
defines your measurement logic.

2. Add drivers and packages to the import list as necessary. You can create a
measurement for any hardware with an accessible I/O library.

3. Optionally, specify version and ui_file_path values for your measurement.
4. Edit the measurement configuration (input parameters).

a. Use the configuration() decorator to define a configuration.
Configuration decorators must be listed in the same order as the parameters in
the measurement function signature.

Configuration decorator syntax:

@meas_name_measurement_service.configuration("DisplayName",

nims.DataType.Type, "DefaultValue")

b. Use the output() decorator to define an output. Output decorators must be
listed in the same order as the measurement function return (or yield) values.

Output decorator syntax:

@meas_name_measurement_service.output("DisplayName", nims.DataType.Type)

5. To update the interactive UI while the measurement runs, use the yield keyword.
The ui_progress_updates example demonstrates this feature.

6. Implement your measurement logic within the measurement function. If you are
developing a measurement plug-in for use with TestStand, review the Running a
Measurement from TestStand topic to understand additional design
considerations.

Measurement Plug-In Generator Parameters topic for details.

Developing a Measurement Plug-In with Python

16 ni.com

7. Save and close measurement.py.
8. Optionally, edit the *.serviceconfig file to customize the display name,

service class, or provided interface for your measurement.

Setting Environmental Variables
You can set environment variables to configure ni_measurement_plugin_sdk
settings. You can create a .env file to set environmental variables. A .env file is a text
file containing environment variables in the form VAR=value. The .env may be
located in these locations, listed in priority order:

• The measurement service's current working directory or one of its parent
directories. For example, you can place a .env file in
<ProgramData>\National Instruments\Plug-Ins to configure
statically registered services.

• The path value set in the .serviceconfig file.
• The path of the Python module calling into ni_measurement_plugin_sdk .

This behavior provides support for TestStand code modules.

For example, the modular instrument initialize_${driver}_sessions(s)
methods allow you to use .env settings to override the IVI option string and specify
simulation options.
Add this to your .env file to enable NI-DCPower simulation with PXIe-4141

instruments.

MEASUREMENT_PLUGIN_NIDCPOWER_SIMULATE=1

MEASUREMENT_PLUGIN_NIDCPOWER_BOARD_TYPE=PXIe

MEASUREMENT_PLUGIN_NIDCPOWER_MODEL=4141

For a complete reference of configurable settings, refer to the .env.sample file
located in the root folder of the latest Measurement Plug-In release examples asset.

Use the Measurement Plug-In UI Editor to create a UI for your measurement.

Starting a Python Measurement Service

To manually run your Python measurement plug-in as a service, open a command
prompt and run start.bat from your measurement folder.

Developing a Measurement Plug-In with Python

© National Instruments 17

To automatically run your measurement plug-in as a service, use the generated service
configuration file to statically register your plug-in. You should statically register your
measurement service when you deploy it to a production environment.

Statically Register a Measurement Service

The Measurement Plug-In discovery service automatically registers measurement
services that are deployed to the Measurement Plug-In services folder. The discovery
service continuously monitors this folder for changes.

You must do the following before you deploy your measurement plug-in:

• Create a batch file that invokes the measurement logic or compile the
measurement project as an executable.

• Ensure that your measurement plug-in has a valid service configuration
(*.serviceconfig) file.
◦ LabVIEW measurement plug-ins can generate this file by running the included

build specification.
◦ For other scenarios, use the service configuration file template to create this

file for your plug-in.

Complete the following steps to deploy your measurement plug-in and statically
register your measurement service.

1. Ensure the path value in the service configuration file is correct for your batch file
or executable.

2. Copy the measurement plug-in folder to the following location:
<ProgramData>\National Instruments\ Plug-Ins \Services\

Note Starting your measurement service from a development environment
temporarily displaces any statically registered measurement service with the
same service class. When you stop the service, the statically registered
instance is restored upon being called. This behavior is useful for rapid
debugging. Ensure a unique service class for each measurement service to
avoid unexpected behavior.

Developing a Measurement Plug-In with Python

18 ni.com

Once your measurement service is statically registered, the Measurement Plug-In
discovery service makes it visible in supported NI applications.

Considerations when Deploying Python Measurement Plug-Ins
Be aware of the following considerations when deploying Python-based measurement
plug-ins:

• For errors indicating a file cannot be found or accessed, do one of the following:
◦ ensure that you have enabled Win32 long paths.
◦ move the plugin or restructure the measurement plug-in to use shorter paths.

Note that only the *.serviceconfig file must be deployed to the discovery
folder. The file can reference paths outside the discovery folder.

• If you are using a virtual environment, recreate it in the deployed location. Do not
move a virtual environment because some files may reference the path for the
virtual environment.

Service Configuration File Template

Use this template to create a service configuration file for your measurement plug-in.

A typical service configuration filename is measurement plug-in
name.serviceconfig. The file contents are as follows:

{

Note The discovery directory is continously monitored. Service
configuration file changes take immediate effect.

Note To exclude virtual environment files from being adding to a plug-in
library, create a file titled .sericeignore within the directory
containing the Python plugin. Add the following line to this file:
.venv/*/**

This will exclude all virtual environment files from being published to the
plug-in library. For more information, refer to Using a Plug-In Library.

Developing a Measurement Plug-In with Python

© National Instruments 19

 "services": [

 {

 "displayName": "display_name",

 "serviceClass": "service_class",

 "descriptionUrl": "description_url",

 "providedInterfaces": [

 "ni. ni_measurement_plugin_sdk .measurement.v1.MeasurementService",

 "ni. ni_measurement_plugin_sdk .measurement.v2.MeasurementService"

],

 "path": "service_filepath",

 "annotations": {

 "ni/service.description": "service_description",

 "ni/service.collection": "collection_name",

 "ni/service.tags": []

 }

 }

]

}

Object Name Description

displayName Specifies the display name of the measurement.

serviceClass

Class name for the measurement service. Also
serves as the ID for the measurement service
and must be unique across all measurement
services.

descriptionUrl
Specifies a URL that contains more information
about the measurement service.

providedInterfaces
Lists the measurement service interfaces. Do not
edit this value.

path
Specifies the path to the measurement
executable or start batch file.

ni/service.description A short description of the measurement.

ni/service.collection

The collection that this measurement belongs
to. Collection names are specified using a
period-delimited namespace hierarchy and are
case-insensitive.

ni/service.tags
Tags describing the measurement. This option
may be repeated to specify multiple tags. Tags

Developing a Measurement Plug-In with Python

20 ni.com

Object Name Description

are case-insensitive.

installPath

Path to an executable or batch file used to install
Python dependencies. For example, you might
point to an install.bat file with the contents
poetry install --only main.

Python Measurement Plug-In Generator Parameters Python Measurement Plug-In Generator Parameters
The ni_measurement_plugin_generator tool requires the measurement plug-in name
as the first parameter. This first parameter is unnamed.

The ni_measurement_plugin_generator tool accepts the following named parameters
in any order using --name value syntax.

Parameter
Name Default Value Description

--d or --
description-
url

“” (empty
string)

Specifies a URL that contains more information about the
measurement plug-in.

--o or --
directory-
out

Specifies the directory where your measurement plug-in folder
is created. The generator creates a new folder with the name
you specified in the Measurement Name parameter.

--
measurement-

1.0.0.0 Specifies a version number in the form x.y.z.q.

Note

For measurement plug-ins sourced in LabVIEW, service configuration file
values should match the values specified in your measurement plug-in
project.

Developing a Measurement Plug-In with Python

© National Instruments 21

Parameter
Name Default Value Description

version

--s or --
service-
class

“measurement
name_Python”

Service Class that the measurement plug-in belongs to. Also
serves to identify the measurement plug-in while it is running
as a service.

--u or --ui-
file

measurement
name.measui

Specifies the file containing the UI for the measurement plug-
in.

Python Measurement Plug-In File Descriptions Python Measurement Plug-In File Descriptions
A new Python measurement plug-in consists of the following files:

File Name Description

*.serviceconfig Contains information required to run the measurement as a service.

*.measui
A ni_measurement_plugin_generator UI Editor file. Contains the
measurement UI. If desired, you may replace the UI with a LabVIEW UI.

*.measproj
The measurement plug-in project file. Select this file to open the
measurement in the ni_measurement_plugin_generator UI editor.

measurement.py
Contains the measurement logic and metadata. Edit this file to modify
measurement behavior or to extend the measurement features.

start.bat Calls Python and runs measurement.py.

Developing a Measurement Plug-In with Python

22 ni.com

Developing a Measurement Plug-In Client Developing a Measurement Plug-In Client
with Python with Python
This section outlines the required steps for developing a measurement plug-in client in
Python. Use the Python examples in github and the remaining topics in this manual to
understand how to develop a working measurement plug-in client for your
application.

Creating a Python Measurement Plug-In Client using Batch
Mode

The client can be created using a one-line command by configuring the necessary
options in Batch Mode.

1. Open a command prompt.
2. Enter the following command, specifying the name of the measurement service

class: ni_measurement_plugin_client_generator --measurement-
service-class measurement_service_class_name

3. Optional: You can specify additional parameters when running this command. For
more details, refer to Python Measurement Plug-In Client Generator
Batch Mode Parameters. If no further parameters are required, run the
command.
A Python file containing the client class will be generated for the specified
measurement service class. For details on using Python plug-in clients, refer to
Python Measurement Plug-In Client Usage

Python Measurement Plug-In Client Generator Batch Mode
Parameters

The ni_measurement_plugin_client_generator tool requires the measurement plug-in
service class as the first parameter. This parameter can be specified multiple times to
create multiple plug-in clients.

Developing a Measurement Plug-In Client with Python

© National Instruments 23

The tool accepts the following named parameters in any order using the --name value
syntax:

Parameter Name Default Value Description

-s, --measurement-service-class -

Creates a Python Measurement
Plug-In Client for the given
measurement service.

-a, --all False

Creates a Python Measurement
Plug-In Client for all the
registered measurement
services.

-m, --module-name Constructed from service class

Name for the Python
Measurement Plug-In Client
module. This value is ignored if
--all is chosen.

-c, --class Constructed from service class

Name for the Python
Measurement Plug-In Client
class in the generated module.
This value is ignored if --all is
chosen.

-o, --directory-out
current_directory/
module_name.py

Output directory for
Measurement Plug-In Client
files.

Creating a Python Measurement Plug-In Client using
Interactive Mode

Measurement plug-in clients can be created individually by providing the necessary
inputs via the command line in interactive mode.

1. Open a command prompt.

Note This
parameter should
not be used with the
--all parameter.

Developing a Measurement Plug-In Client with Python

24 ni.com

2. Run the following command to list the registered and active measurements on the
machine: ni_measurement_plugin_client_generator --
interactive
This command displays a numbered list of all registered measurement services.
1. Measurement A

2. Measurement B

3. Measurement C

3. Enter the number corresponding to the measurement you want to create a client
module for. To create a client module for Measurement B from the example above,
you would enter 2.

4. Enter the name of the measurement client module and class, ensuring that the
name follows Python's module naming conventions.
A Python file containing the client class will be generated for the specified
measurement service class. For more details, refer to Python Measurement
Plug-In Client Usage.

Python Measurement Plug-In Client Usage

The generated Python file will contain a class and public methods for the specified
measurement. Before you can interact with a measurement via the plug-in client, the
Measurement Service must be running. Refer to the following section for descriptions
of the public methods you can use to interact with a measurement service:

• register_pin_map— Registers the pin map with the pin map service.
• measure— Interacts with non-streaming data measurements by accepting the

actual input configured in the measurement and returning the measurement
output.

• stream_measure— Same as measure, but used specifically for interacting with
streaming data measurements.

• cancel— Aborts any ongoing measure or stream_measure call.

Note This API can only be used from a separate thread.

Developing a Measurement Plug-In Client with Python

© National Instruments 25

Developing a Measurement Plug-In with Developing a Measurement Plug-In with
LabVIEW LabVIEW
This topic outlines the required steps for developing a measurement plug-in in
LabVIEW. Use the LabVIEW examples in github and the remaining topics in this manual
to understand how to develop a working measurement for your application.

Related reference:

• LabVIEW Measurement Development Dependencies

Related information:

• Measurement Plug-In SDK Examples for LabVIEW on github

Creating a LabVIEW Measurement Plug-In

Complete the following steps to add a measurement plug-in to a LabVIEW project.
Ensure that you have installed the LabVIEW development dependencies before you
begin.

1. Open or create a LabVIEW project. Save the project.
2. In the Project Explorer window select Tools » » Create Measurement Service.

A dialog box appears.
3. Enter a name for the new measurement plug-in.

Note If you are developing a measurement plug-in for use with TestStand,
review the Running a Measurement from TestStand topic to
understand additional design considerations.

Developing a Measurement Plug-In with LabVIEW

26 ni.com

https://github.com/ni/measurementlink-labview/releases

4. Click Create Measurement Service.
A new library is added to the LabVIEW project. This library contains your
measurement plug-in.

Note The measurement plug-in library also includes a build
specification to simplify the process of creating an executable, which you

Developing a Measurement Plug-In with LabVIEW

© National Instruments 27

Configuring a LabVIEW Measurement Plug-In

You must modify a generated LabVIEW measurement plug-in to meet your specific
needs.

These steps assume that your LabVIEW project is already open.

1. Edit the measurement inputs.
a. Within your measurement plug-in library, open the Measurement

Configuration.ctl typedef file.
b. Expand the Measurement Configuration cluster and add controls to represent

input values. Change the value of a control to specify a default value for the
measurement.

c. Save and close the typedef file.
2. Edit the measurement outputs.

a. Within your measurement plug-in library, open the Measurement
Results.ctl typedef file.

b. Expand the Measurement Results cluster and add controls to represent output
values.

c. Save and close the typedef file.
3. Update the measurement logic.

a. Within your measurement plug-in library, open Measurement Logic.vi.
b. Implement your measurement logic using the existing configuration, results,

and error clusters.
Refer to the Measurement Development Best Practices topic for an abstract
overview of useful development patterns.
To update the interactive UI while the measurement runs, use the Update
Results.vi. The UIProgressUpdates example demonstrates this feature.

c. Save and close the VI.

can use to deploy your measurement plug-in.

Note Necessary steps are also documented as bookmarked to-do sections.
In the LabVIEW project window select View » Bookmark Manager and browse
the #MeasurementToDo bookmarks. Double-click a bookmark to open the
relevant VI and code location.

Developing a Measurement Plug-In with LabVIEW

28 ni.com

4. If you are developing a measurement plug-in for use with TestStand, review the
Running a Measurement from TestStand topic to understand additional
design considerations.

5. Update the measurement UI.
a. Within your measurement plug-in library, open Measurement UI.vi.
b. Use LabVIEW controls and indicators to implement your UI. To function,

control and indicator names and datatypes must correspond to the inputs and
outputs of your measurement logic. Note that you can use captions (which
have no matching constraint) to supplement labels.

c. Save and close the VI.
6. Optionally, update the measurement details.

a. Within your measurement plug-in library, open Get Measurement
Details.vi.

b. Open and edit the block diagram. View the LabVIEW Measurement Details topic
for a description of each field.

Setting Pin or Path Behavior

Use Get Type Specializations.vi to specify whether a string behaves as a
pin or path. Setting this behavior is useful when you intend to interact with the
measurement logic through a graphical UI.

1. Open Get Type Specializations.vi.
2. Open the block diagram.
3. Modify the existing Type Specializations cluster to add your parameter.

a. Specify a Parameter Name that matches the name of the parameter in your
measurement logic.

b. Select the Type Specialization for your parameter.
4. If you selected Pin as the Type Specialization for your parameter, use the

Annotations cluster to specify the instrument type.
a. Specify a Key of pin.instrument_type.
b. Specify a Value. Valid values for NI devices are listed in the comment on the

block diagram.
5. Close the VI and save your project.

Developing a Measurement Plug-In with LabVIEW

© National Instruments 29

Starting a LabVIEW Measurement Service

To immediately run a LabVIEW measurement plug-in from the LabVIEW project, open
and run the Run Service VI located in your measurement plug-in library. The VI runs
your plug-in as a service and reports the measurement service port.

To automatically run your measurement plug-in as a service, create a LabVIEW
executable and use it to statically register the measurement plug-in. You should
statically register your measurement service when you deploy it to a production
environment.

Creating an Executable for a LabVIEW Measurement

Use the build specification in your measurement library to package a LabVIEW
measurement as an executable, which can then be configured to run as a service.

Complete the following steps to run the build specification for your measurement
library:

1. In your LabVIEW project, expand Build Specifications.
2. To review or change the destination directory, right-click the build specification

and select Properties. The destination directory is specified on the Information
page.

3. Right click the nested build specification file and select Build.

An executable and its dependencies are built to the destination directory specified in
the build specification.

Note Starting your measurement service from a development environment
temporarily displaces any statically registered measurement service with the
same service class. When you stop the service, the statically registered
instance is restored upon being called. This behavior is useful for rapid
debugging. Ensure a unique service class for each measurement service to
avoid unexpected behavior.

Developing a Measurement Plug-In with LabVIEW

30 ni.com

Statically Register a Measurement Service

The Measurement Plug-In discovery service automatically registers measurement
services that are deployed to the Measurement Plug-In services folder. The discovery
service continuously monitors this folder for changes.

You must do the following before you deploy your measurement plug-in:

• Create a batch file that invokes the measurement logic or compile the
measurement project as an executable.

• Ensure that your measurement plug-in has a valid service configuration
(*.serviceconfig) file.
◦ LabVIEW measurement plug-ins can generate this file by running the included

build specification.
◦ For other scenarios, use the service configuration file template to create this

file for your plug-in.

Complete the following steps to deploy your measurement plug-in and statically
register your measurement service.

1. Ensure the path value in the service configuration file is correct for your batch file
or executable.

2. Copy the measurement plug-in folder to the following location:
<ProgramData>\National Instruments\ Plug-Ins \Services\

Once your measurement service is statically registered, the Measurement Plug-In
discovery service makes it visible in supported NI applications.

LabVIEW Measurement Plug-In Project File Descriptions LabVIEW Measurement Plug-In Project File Descriptions
Each LabVIEW measurement plug-in is created as a separate library (lvlib) in your
project. The following table describes important files within that library.

Note The discovery directory is continously monitored. Service
configuration file changes take immediate effect.

Developing a Measurement Plug-In with LabVIEW

© National Instruments 31

File Name Description

Get Measurement
Details.vi

Specifies metadata for the LabVIEW measurement service.

Get Type
Specializations.vi

Specifies information about the parameters in your measurement
configuration. For example, you can use this VI to annotate a string
control as a pin name specialization. The Parameter Name associates
the annotation with the underlying parameter. Do not edit the front
panel. Switch to the block diagram and make changes there.

Get UI Details.vi
Specifies information about the measurement UI file, such as the UI file
name.

Measurement
Configuration.ctl

Defines measurement input parameters with LabVIEW controls. The
default control is a double array labeled Array in.

Measurement
Logic.vi

Defines measurement logic. This template file is already configured to
use Measurement Configuration.ctl and Measurement
Results.ctl as input and output.

Measurement
Results.ctl

Defines measurement return values with LabVIEW indicators. The
default indicator is a double array labeled Array out.

Measurement UI.vi
Defines the measurement user interface. To function, control and
indicator labels and datatypes must correspond with Measurement
Configuration.ctl and Measurement Result.ctl.

Run Service.vi Initializes your measurement as a service and returns a listening port.

LabVIEW Measurement Plug-In Details LabVIEW Measurement Plug-In Details
This topic provides additional information about the controls found in Get
Measurement Details.vi.

Detail
Name Default Value Description

Display
Name

" <measurement
name>_LabVIEW" Specifies the display name of the measurement.

Version 1.0.0.0 Specifies a version number in the form x.y.z.q.

Service
Class

"<measurement
name>_LabVIEW"

Class name for the measurement service. Also serves as the ID for the
measurement service and must be unique across all measurement

Developing a Measurement Plug-In with LabVIEW

32 ni.com

Detail
Name Default Value Description

services.

Developing a Measurement Plug-In with LabVIEW

© National Instruments 33

Developing a Measurement Plug-In Client Developing a Measurement Plug-In Client
with LabVIEW with LabVIEW
This section outlines the required steps for developing a measurement plug-in client in
LabVIEW. Use the LabVIEW examples in github and the remaining topics in this manual
to understand how to develop a working measurement plug-in client for your
application.

Creating a LabVIEW Measurement Plug-In Client

Complete the following steps to create a measurement plug-in client using LabVIEW.

Make sure LabVIEW development dependencies are installed before you begin.

1. Open or create a LabVIEW project and save the project file.
2. In the Project Explorer window, go to Tools » Plug-In SDKs » Measurements »

Create Measurement Plug-In Client.
A dialog box title Create Measurement Plug-In Client displaying all registered
services opens.

3. Select one more more Measurement services from the list.
4. Click Create Measurement Plug-In Client(s).

A new library is added to the LabVIEW project containing your measurement plug-
in client.

Refer to LabVIEW Measurement Plug-In Client Project File Descriptions for
more details about the generated measurement plug-in client library.

LabVIEW Measurement Plug-In Client Project File
Descriptions

Each LabVIEW measurement plug-in client is created as a separate library (.lvlib) in
your project. The following sections describe important files within that library.

• Measurement Configuration.ctl— Defines measurement input

Developing a Measurement Plug-In Client with LabVIEW

34 ni.com

parameters with LabVIEW controls. This control is a copy of the Measurement
Configuration.ctl in the Measurement Plug-In.

• Measurement Results.ctl— Defines measurement return values with
LabVIEW indicators. This control is a copy of the Measurement Results.ctl in the
Measurement Plug-In.

• Create Measurement.vi— Creates a client to communicate with the
Measurement Plug-In Service and registers the measurement metadata for the
created client.

• Measure.vi— Invokes the measurement logic and returns the result.
• Close Measurement.vi— Closes the client connection with the Measurement

Plug-In.
• Run Client.vi— A wrapper VI that demonstrates the usage of Create
Measurement.vi, Measure.vi and Close Measurement.vi present in
the client library. It communicates with the Measurement Plug-In Service and
returns the measurement result values.

Registering a Pin Map for a LabVIEW Measurement Plug-In
Client

If your measurement service requires a pin map, you must register that pin map before
performing a measurement. To register a pin map file for a pin-based measurement
plug-in, complete the following steps.

1. Create a new VI.
2. From the Measurement I/O palette, select and place the Register Pin

Map.vi in the new VI.
3. Provide the pin map path as input to the Register Pin Map VI.
4. Wire the pin map id output of the Register Pin Map VI to the input of

the Run Client VI.
5. Configure your measurement and run the new VI.

Running a LabVIEW Measurement Plug-In Client

Complete the following step to run a LabVIEW measurement plug-in client from your
LabVIEW project.

Developing a Measurement Plug-In Client with LabVIEW

© National Instruments 35

Open and run the Run Client.vi located in your measurement plug-in client
library. This VI communicates with the Measurement Plug-In Service and returns the
measurement results.

Note Ensure that the Measurement Service is running when interacting with
measurements via the Measurement Plug-In Client.

Developing a Measurement Plug-In Client with LabVIEW

36 ni.com

Developing a User Interface for a Developing a User Interface for a
Measurement Plug-In Measurement Plug-In
Use the UI Editor to quickly create a user interface for your measurement plug-in. UI
element datatypes must correspond with the datatypes and labels specified within
your measurement logic.

Creating a UI File
Complete the following steps to create a UI:

1. Launch UI Editor. Search installed applications or navigate to National
Instruments » Measurement Plug-In UI Editor in the Windows start menu.

2. Select File » New » Measurement UI. A new project is created and a *.measui file
opens for editing.

Linking the UI with Measurement Data

1. In UI Editor, select your measurement from the drop-down list below the file tab
bar. If your measurement is not listed, ensure that your measurement service is
running.

Note You can also create a UI with LabVIEW and associate it with any
measurement. To function, control and indicator labels and datatypes must
correspond to the inputs and outputs of your measurement logic. Note that
you can use captions to display text that is different from the label.

Note To rename project files, right-click the file in the Project Files pane and
select Rename.

Developing a User Interface for a Measurement Plug-In

© National Instruments 37

2. Use the left rail of the UI pane to add controls and indicators to the UI.
3. Use the Data source selector to associate measurement data with a UI element.

The selector automatically appears when you add an element to the UI and can be
accessed by hovering over a UI element.

4. Save your completed UI and edit your measurement to associate it with the new
UI.

Note Selecting a data source automatically updates the name of the UI
element. You can manually change the name without disrupting the data
source association.

Note It is possible to associate a *.measui UI with a LabVIEW
measurement in place of the default Measurement UI.vi. In your
measurement service library, edit Get UI Details.vi to specify the
path to your UI.

Developing a User Interface for a Measurement Plug-In

38 ni.com

Specify the Measurement UI

You can associate a LabVIEW VI or a Measurement UI Editor interface (*.measui) with
your measurement service.

Complete the following steps to associate a UI with a Python measurement service.

1. Open measurement.py for editing.
2. Locate the measurement_info variable declaration.
3. Edit the ui_file_path value with the path to your *.measui or *.vi file.

To specify the UI for a LabVIEW measurement service, update Measurement UI.vi
in the measurement service library within your LabVIEW project. To associate a
Measurement UI Editor interface (*.measui) with your LabVIEW measurement
service, edit Get UI Details.vi in your measurement service library within your
LabVIEW project.

Developing a User Interface for a Measurement Plug-In

© National Instruments 39

Creating and Using Pin Maps Creating and Using Pin Maps
A pin map allows you to define how DUT (device under test) pins and sites connect to
instruments and instrument channels. A single pin map can support multiple
instrument types and multiple sites, enabling you to test at scale.
Measurement Plug-In supports pin maps and uses information from a pin map file to
initialize and manage NI driver sessions.

Use InstrumentStudio to create or edit a pin map. InstrumentStudio provides a
graphical experience (shown below) for creating and editing pin maps, which are
implemented in XML.

For more information, refer to Setting an Active Project Pin Map in the
InstrumentStudio user manual.

Managing Pin Map Files

NI recommends saving all related files for each DUT you will test within the same
folder. The folder should contain your InstrumentStudio project, the pin map for the
DUT, TestStand files, and any other files you will use to test and measure the DUT.

Creating and Using Pin Maps

40 ni.com

Before you can use a pin map to take a measurement, the pin map must be active.
Refer to Accessing Pin Maps in Measurement Logic for more information.
Related reference:

• Accessing Pin Maps in Measurement Logic
• Pin Map Contents

Related information:

• Setting an Active Project Pin Map
• Applying a Pin Filter
• Pin Map File XML Structure (TSM)

Pin Map Contents Pin Map Contents
A test system typically consists of NI hardware with inputs and outputs that connect to
a DUT (device under test). Pin maps describe the hardware, DUT, and connections
present within your test system. This encoded description enables NI software to take
measurements based on your physical system configuration. Refer to the section
below for detailed descriptions of items commonly used in pin maps.

• Instrument — software representation of equipment such as oscilloscopes,
frequency generators, or digital multimeters. You must add each instrument used
in the test system to the pin map.

• Channel — Input or output connection point to a data acquisition system or to an
instrument. For example, you would use a value between 0 and 7 to specify a
single channel on a PXIe-5105 oscilloscope, which corresponds to the 8 available
channels on this device.

• Pin — Physical input or output of a device you are testing. There are two pin types
to select from in the Pin Map Editor:
◦ DUT pin — means one of the following:

▪ A specific pin on the DUT (device under test).

Note When using third-party equipment, you must add a custom
instrument to your pin map.

Creating and Using Pin Maps

© National Instruments 41

https://www.ni.com/docs/en-US/bundle/instrumentstudio/page/set-active-project-pin-map.html
https://www.ni.com/docs/en-US/bundle/instrumentstudio/page/apply-pin-filter.html
https://www.ni.com/docs/en-US/bundle/teststand-semiconductor-module/page/tssemiconductor/pinmap_xml.html

▪ A resource on the tester or DIB (device interface board) that connects to an
instrument and is associated with one or more sites. A resource can
have one connection per site or one connection per group of sites.

◦ System pin — A resource on the tester or DIB that connects to an
instrument. A system pin is a single connection associated with all sites.

• Site — Physical location of a DUT. When testing multiple instances of the same
DUT at multiple sites, you must use similar connections for each site.

• Connection — Pin map representation of the connection between an
instrument channel and a pin on a site, or the connection between an
instrument channel and a system pin.

Editing Pin Maps Editing Pin Maps
Refer to the following sections for information about changing the contents of your pin
map.

Adding Items to a Pin Map

Use the Pin Map tab of the Pin Map Editor to create a pin map entry and specify
attributes for each item you add. Complete the following steps to add an item to a pin
map.

1. Click <Add [...] Here> to display the interactive pane for this item type.
2. Click the button of the item you want to add to the pin map.
3. Specify attributes for the new item using the fields in the panel.
4. (Optional) Use the Comment button to document additional information about

the new item.

Refer to Driver Instrument Reference for more information on how to configure
instrument attributes.

Note Sites are numbered automatically starting at 0. You cannot assign
custom values to sites.

Creating and Using Pin Maps

42 ni.com

Pin Map Connections

Pin map connections enable you to specify routing between instrument channels and
DUTs (devices under test). Refer to the following section for information on configuring
pin map connections.

Connections Table

The connections table displays all the defined connections within a pin map. Use the
table to see an overview of all defined connections within a pin map, and filter
connections for specific views.

Accessing the Connections Table Accessing the Connections Table

Select the top-level Connections section within the Pin Map tab of the Pin Map Editor
to display the connections table.

Filtering the Connections Table View Filtering the Connections Table View

Use the View Connections For: drop-down to filter connections based on the desired
connection type.

Changing Connection Configurations Changing Connection Configurations

The connections table enables you to edit connection settings for all defined
connections. Use the drop-down controls in each row to change connections for each
pin map connection.

Note NI recommends using the Connections Table in the Pin Map Editor to
configure connections settings. This view shows all available routing options
in your pin map.

Note You do not have to connect to every pin in your pin map, but you might
receive a warning message for unconnected pins.

Creating and Using Pin Maps

© National Instruments 43

Driver Instrument Reference Driver Instrument Reference
Refer to the following sections for information about attributes associated with
specific instrument types.

General Information

• The value specified for the Name attribute must match the device alias. This alias
can be found in NI MAX.

• All instrument panels contain a drop-down menu for specifying the instrument
type. Use this to change the selected instrument to another type.

• Use the Cut, Copy, and Paste buttons - or select these options from the right-click
menu- to perform those actions on selected instruments.

• Incorrectly specified attribute values may cause the Pin Map Editor to generate an
error message. If possible, identify the source of the error, and refer to the Notes
column for the instrument type below for potential fixes.

DCPower

Table 11. Instrument Attributes

Attribute Name Data Type Example value Notes

Name Text PXI1Slot3

Must match the
device alias,
which can be
found in NI MAX.

Number of
Channels Number 1

This number
should match the
available number
of channels on
your device.

Channel Group
Name Text

• CommonDCPowerChannelGroup
• SMUSite3

Used for channel
expansion. Each
name defines a
session. Using

Note Use the Delete key on your keyboard to remove instruments.

Creating and Using Pin Maps

44 ni.com

Attribute Name Data Type Example value Notes

the same group
name for
multiple device/
channel
combinations
adds them to the
same session.

Channel(s) Text 0,1,2,3

Values must be
within the range
of the number of
channels on the
device. In this
example, the
device has 4
channels.

Digital Pattern

Table 2. Instrument Attributes

Attribute
Name Data Type Example value Notes

Name Text PXI1Slot3

Must match
the device
alias, which
can be found
in NI MAX.

Number of
Channels Number 32

This number
should match
the available
number of
channels on
your device.

Note Measurement Plug-In does not support DCPower sessions that do not
contain a channel group.

Creating and Using Pin Maps

© National Instruments 45

Attribute
Name Data Type Example value Notes

Group Text
• CommonDigitalPatternChannelGroup
• DigPatSite3

Used for
channel
expansion.
Each name
defines a
session. Using
the same
group name
for multiple
devices adds
them to the
same session.

DMM

Table 11. Instrument Attributes

Attribute Name Data Type Example value Notes

Name Text PXI1Slot3
Must match the device
alias, which can be
found in NI MAX.

SCOPE

Table 11. Instrument Attributes

Attribute Name Data Type Example value Notes

Name Text PXI1Slot3

Must match the
device alias, which
can be found in NI
MAX.

Number of
Channels Number 2

This number
should match the
available number
of channels on
your device.

Creating and Using Pin Maps

46 ni.com

Attribute Name Data Type Example value Notes

Group Text
• CommonScopeChannelGroup
• ScopeSite3

Used for channel
expansion. Each
name defines a
session. Using the
same group name
for multiple
devices adds them
to the same
session.

FGEN

Table 11. Instrument Attributes

Attribute Name Data Type Example value Notes

Name Text PXI1Slot3
Must match the device
alias, which can be
found in NI MAX.

Number of Channels Number 1

This number should
match the available
number of channels on
your device.

DAQmx

Table 11. Instrument Attributes

Attribute Name Data Type Example value Notes

Name Text Voltage Rails
This attribute specifies
the DAQmx task name.

Channel List Text Dev1/ai0,Dev1/ai8

List of channels
associated with a task.
You must use the
format shown in the
example - the
instrument name and
channel name are
separated by a forward
slash, and qualified

Creating and Using Pin Maps

© National Instruments 47

Attribute Name Data Type Example value Notes

channels are separated
by commas.

Custom Instrument

Table 11. Instrument Attributes

Attribute Name Data Type Example value Notes

Name Text PXISlot3

For instruments using
VISA and instrument
drivers, use the VISA
resource name or alias.

Instrument Type ID Text VisaDmm
Must match the Type ID
specified in the
Measurement code.

Creating and Using Pin Maps

48 ni.com

Running a Measurement from Running a Measurement from
InstrumentStudio InstrumentStudio
You can run Measurement Plug-In measurements from InstrumentStudio.

1. Open the measurement in InstrumentStudio.
2. On the Home screen, select Manual Layout.

The Edit Layout screen appears.
3. Locate your measurement plug-in in the list. Select Create large panel in the drop-

down list for your measurement plug-in.

The large panel updates to list the selected measurement plug-in.
4. Click OK. InstrumentStudio opens a new project and displays the measurement UI.
5. Optional: Ensure that the project contains any referenced pin map and that a pin

map is marked as active.
6. Click Run in the measurement UI. The measurement executes and values update in

the measurement UI.

Related concepts:

• Understanding Measurement Plug-In Behavior

Note If your measurement plug-in does not appear in the Edit Layout
window, ensure that the plug-in is either configured to start
automatically or has been started manually. For more information, refer
to Statically Register a Measurement Service section of the
Developing a Measurement Plug-In with LabVIEW or
Developing a Measurement Plug-In with Python topics.

Tip You can change the behavior of the Run button so that the
measurement runs continuously. Click the arrow at the side of the button
and select Run Continuously to change the button behavior. Once the
measurement is running, the button text changes. Click Stop to stop the
measurement.

Running a Measurement from InstrumentStudio

© National Instruments 49

Related tasks:

• Creating and Using Pin Maps

Running a Measurement from InstrumentStudio

50 ni.com

Running a Measurement from TestStand Running a Measurement from TestStand
You can run Measurement Plug-In measurements withTestStand.

1. Add the measurement to a TestStand sequence.
a. Launch TestStand.
b. Double-click the Measurement step in the Insertion Palette. A measurement

step is added to your sequence.
c. Select the new measurement step in the sequence and select the Configure

Measurement tab for the step.
d. Select your measurement in the Measurement list.

Measurement parameters appear in the Configure Measurement tab.

e. Review and modify the measurement parameters.
2. If the measurement is pin-aware, configure the sequence to use your pin map. See

the Using a Pin Map to Enhance Automation section for more information.
3. Run the sequence. The measurement runs as a step in your sequence.

Using a Pin Map to Enhance Automation

Pin maps contain information about connected instruments. Measurement Plug-In
uses information from a registered pin map to determine the associated driver for NI
hardware. You can then use the Measurement Plug-In session management service to
manage instrument driver sessions for your test sequence.

Complete the following steps to register your pin map:

Note If your measurement does not appear in the Measurement list,
ensure that the plug-in is either configured to start automatically or
has been started manually. For more information, refer to
Automatically Starting a Measurement Plug-In.

Running a Measurement from TestStand

© National Instruments 51

1. Double-click the Update Pin Map step in the Insertion Palette. An update pin map
step is added to your sequence.

2. Select the Update Pin Map step in the sequence and select the Update Pin Map
tab to configure the pin map path.

3. Specify the Pin Map Path. Type the path directly or click Browse and select the pin
map file.

Using the Session Manager Service

Once you have registered a pin map, you can configure a sequence to initialize and
close driver sessions for use with your measurement. Refer to Using Driver Sessions in
TestStand for detailed instructions.

Related concepts:

• Understanding Measurement Plug-In Behavior

Related tasks:

• Using Driver Sessions in TestStand
• Creating and Using Pin Maps

Using Driver Sessions in TestStand Using Driver Sessions in TestStand
The session management service manages instrument driver sessions that are
associated with the pin map. Because this action relies on the pin map, you must first
register your pin map with the pin map service.

Note For best performance, register your pin map in the ProcessSetup
sequence callback or use a separate Setup step group. Avoid registering a
pin map within the Main sequence.

Note LabVIEW and Python Measurement Plug-In releases include example
measurements that demonstrate how to use NI hardware with the session
management and pin map services. Many Measurement Plug-In examples
include TestStand sequences to demonstrate pin map and session handling.

Running a Measurement from TestStand

52 ni.com

Use the ProcessSetup and ProcessCleanup sequence file callbacks to efficiently
initialize and close driver sessions for the steps that run as part of your MainSequence
sequence. In the ProcessSetup sequence instrument sessions are reserved, opened,
registered, and then unreserved. You must unreserve the sessions to make them
available to individual measurements. In the ProcessCleanup sequence all registered
sessions are reserved, closed, unregistered, and finally unreserved.

Accessing Sequence File Callbacks

Complete the following steps in TestStand to open the Sequences list and ensure the
appropriate sequence file callbacks are visible.

1. Select View » Sequence File » Sequences to open the Sequences tab.
2. In the Sequences tab, right-click and select Sequence File Callbacks. The Select

Callbacks dialog box appears.
3. In the list of callbacks, select the ProcessSetup and ProcessCleanup callbacks.
4. Click OK. The selected callbacks are listed in the Sequences tab.
5. Click a sequence to select it for editing.

Creating the ProcessSetup Sequence

In the ProcessSetup sequence, you must register your pin map with the pin map
service. The Measurement Plug-In session manager service relies on pin map
information to manage sessions and communicates directly with the pin map service
to access a registered pin map and determine session requirements.

Use the Update Pin Map custom step to register the pin map with the pin map service.
Complete the following steps to register your pin map:

1. Double-click the Update Pin Map step in the Insertion Palette. An update pin map

Note Many Measurement Plug-In examples include TestStand sequences to
demonstrate pin map and session handling. Some examples use step groups
instead of the callback sequences described in this topic. For those
examples, the Setup step group corresponds to the ProcessSetup sequence
callback and the Cleanup step group corresponds to the ProcessCleanup
sequence callback.

Running a Measurement from TestStand

© National Instruments 53

step is added to your sequence.
2. Select the Update Pin Map step in the sequence and select the Update Pin Map

tab to configure the pin map path.
3. Specify the Pin Map Path. Type the path directly or click Browse and select the pin

map file.

Complete the following steps to instantiate sessions for use by individual
measurement steps:

1. In a code module in the ProcessSetup sequence file callback, call the
ReserveSessions() method to reserve all sessions. Specify an empty string for the
pin_or_relay_names and instrument_type inputs to return session information for
all pins connected to resources in the registered pin map file.

2. Open the instrument sessions and detach the sessions. Use the session
information from the previous step to call the Initialize Measurement Plug-In APIs
to open sessions for each instrument.
◦ In LabVEW, call Attach gRPC Session followed by Close Sessions.
◦ In Python, initialize the sessions with the initialization behavior set to

ATTACH_TO_SESSION_THEN_CLOSE.

3. Call the RegisterSessions() method to signal to the session management service
that you have initialized the driver sessions. This will enable future calls to the
Session Management API to provide information to you about whether the
sessions are currently open, and will allow you to later request a list of all open
sessions.

4. Call the UnreserveSessions() method to unreserve the sessions so that they can be
reserved by individual measurement steps.

Creating the ProcessCleanup Sequence

Complete the following steps to close sessions once the test sequence completes:

1. In a code module in the TestStand ProcessCleanup sequence file callback, call the
ReserveAllRegisteredSessions() method to retrieve a list of open instrument
sessions and reserve those sessions for closure.

Note You must generally use grpc-enabled NI driver APIs to create driver
sessions that can be shared between measurement services.

Running a Measurement from TestStand

54 ni.com

2. Close and detach the instrument sessions. You can iterate through the list of driver
sessions and use the Measurement Plug-In API to close each session.
◦ In LabVEW, call Attach gRPC Session followed by Close Sessions.
◦ In Python, initialize the sessions with the initialization behavior set to

ATTACH_TO_SESSION_THEN_CLOSE.
3. Call UnregisterSessions() to unregister the sessions.
4. Call the UnreserveSessions() method to unreserve the sessions so that they are

free for other clients.

Running a Measurement from TestStand

© National Instruments 55

Monitoring or Debugging Measurements Monitoring or Debugging Measurements
You can use InstrumentStudio to interactively debug a measurement step while it runs
in an automated TestStand sequence. Measurement Plug-In also provides copy and
paste buttons so that you can copy parameter values between different instances of
the same measurement. Note that only the calling application may control a running
measurement.

Debugging Tips

• You can use breakpoints with measurement steps in TestStand to debug your
sequence as you would with other step types.

• Opening the measurement in InstrumentStudio allows you to run the
measurement interactively, or to run the measurement from TestStand and
monitor the measurement UI behavior in InstrumentStudio.

• Starting your measurement service from a development environment temporarily
displaces any statically registered measurement service with the same service
class. When you stop the service, the statically registered instance is restored upon
being called. This behavior is useful for rapid debugging. Ensure a unique service
class for each measurement service to avoid unexpected behavior.

• While a measurement service runs, there are multiple ways to execute the
associated measurement logic. The measurement UI toolbar indicates where
active measurement data originates.

Debugging Tools

Use the buttons next to the Measurement list to reload values, to open the
measurement in InstrumentStudio, or to copy and paste parameter values between
InstrumentStudio and TestStand and between measurements within the same

Note To ensure monitoring is enabled, open your sequence in TestStand. In
the Variables pane, set FileGlobals » Measurement Plug-In »
EnableMonitoring to True. You must enable monitoring to ensure
InstrumentStudio can monitor a measurement running in TestStand.
Enabling monitoring may impact measurement performance.

Monitoring or Debugging Measurements

56 ni.com

application.

Table 8. Measurement Plug-In monitor and debugging toolbar buttons

Control Description

In TestStand, reloads the measurement parameter values and updates the measurement
UI. This button also refreshes the measurements list to display added or removed
measurements.

In TestStand, opens the measurement UI in InstrumentStudio. Note the following
behaviors:

• If the measurement is running in TestStand, InstrumentStudio opens the
measurement with existing parameter values and pin map associations.

• In other scenarios, including when the measurement sequence is open but not
running in TestStand, you may be required to do the following before
InstrumentStudio exhibits expected behavior:
◦ Enable monitoring by editing the Measurement Plug-In FileGlobals variables in

TestStand.
◦ Manually associate a pin map with the measurement in InstrumentStudio.
◦ Copy and paste values from TestStand using the associated toolbar buttons.

Copy measurement parameter values.

Paste measurement parameter values.

Displacing Statically Registered Measurement Services

You can temporarily displace a statically registered measurement service. This
behavior is useful for rapidly debugging measurement logic.

When you statically registered your measurement plug-in, the Measurement Plug-In
discovery service starts and stops your measurement service as needed. If you start

Monitoring or Debugging Measurements

© National Instruments 57

your measurement service from a development environment using the same service
class as the statically registered measurement service, the Measurement Plug-In
discovery service detects the new instance of the service and stops the statically
registered instance. When the development instance of the service stops, the
Measurement Plug-In discovery service restarts the statically registered instance as
needed.

In an application environment, be sure to specify unique service classes to avoid
unexpected behavior.

Monitoring or Debugging Measurements

58 ni.com

Plug-In Library Plug-In Library
A plug-in library is an HTTP web API that contains services you use to take
measurements. Plug-in libraries enable you to share and collaborate across teams.

Plug-In Library Installation

Windows Installation

The plug-in library is available as a stand-alone service, or as an optional package
when installing InstrumentStudio using NI Package Manager.

To install the stand-alone service, search for Plug-In Library in NI Package Manager.

To use a plug-in library with InstrumentStudio, select the optional Plug-In Library
Service package when installing InstrumentStudio in NI Package Manager.

For more information on installing NI software, refer to the NI Package Manager
user manual.

Linux Installation

NI Linux Device Drivers are required to use the plug-In library service and optional CLI
on Linux. Refer to Installing NI Drivers and Software on Linux Desktop for
more information on installing required drivers and feeds.

Use the following package names to install the plug-in library service and CLI:

• ni-plugin-library-service-bin
• ni-plugin-library-cli-bin

Note To install the optional command-line interface (CLI), search for Plug-In
Library CLI in NI Package Manager.

Note The plug-in library CLI installs by default with InstrumentStudio.

Plug-In Library

© National Instruments 59

By default, the plug-in library service (nipluginlibrary.webapi) requires root
access to run. If you do not want to run the service as root or via sudo, you can add a
user to the nipluginlib group. This group owns files and folders accessed by the
plug-in library service.

Related information:

• NI Package Manager User Manual
• Installing NI Drivers and Software on Linux Desktop

Starting a Plug-In Library
To start a plug-in library, run the nipluginlibrary.webapi binary. This file is
located in the following paths:

• Linux: Type (nipluginlibrary.webapi) and press Enter to locate the file.
• Windows: <Program Files>\National Instruments\PluginLibrary

Once you have started the plug-in library, it will listen to requests from any source on
port 43100 by default. These settings can be modified by following the instructions in
Plug-In Library Settings.

Plug-In Library Settings

The following sections describes how to customize plug-in library behavior.

Changing Maximum Upload Size
To specify the allowed size of services being uploaded to a plug-in library, enter the
following command:
nipluginlibrary.webapi.exe --PLUGINLIBRARY:MAX_UPLOAD_SIZE=<bytes>

• To specify bytes, enter the number value, with no suffixes.
• To specify megabytes, use either MB or mb as a suffix.
• To specify gigabytes, use either GB or gb as a suffix.

Note To set this value using environment variables, create the following

Plug-In Library

60 ni.com

https://www.ni.com/docs/en-US/bundle/package-manager/page/install-remove-upgrade.html
https://www.ni.com/r/linuxrepository

Changing the Default Host and Port
To change the plug-in library host and port address, enter the following command:
nipluginlibrary.webapi.exe --URLS=http://<host>:<port>

If you want to change the default port, enter the following command:
nipluginlibrary.webapi.exe --HTTP_PORTS=<port>

• The <host> value specifies where web requests can come from. The default value
for this parameter is *. This value allows requests to come from anywhere. To
restrict requests to the local host, use localhost.

• The <port> value specifies the port used. To assign ports dynamically, use 0.

Assigning Port and Host Addresses via Environment Variables
Create the following environment variables to configure settings for your plug-in
library:

• To specify the host and port address, use URLS=http://<host>:<port>
• To specify only the port address, use HTTP_PORTS=<port>

Dynamic port that accepts requests from anywhere
nipluginlibrary.webapi.exe --URLS=http://*:0

variable:
PLUGINLIBRARY__MAX_UPLOAD_SIZE=<bytes>

Note You cannot use localhost when specifying dynamic port
binding. Instead, use either 127.0.0.1 or [::1] to specify dynamic
port binding for locally restricted requests.

Plug-In Library

© National Instruments 61

Single port that only accepts local requests, with a
mamixum upload size of 300 MB
nipluginlibrary.webapi.exe --URLS=http://localhost:43102

 --PLUGINLIBRARY:MAX_UPLOAD_SIZE=300mb

Plug-In Library Configuration Files

Plug-in library settings can be configured using configuration files. Refer to the
following sections for information on how to create and use configuration files to
manage plug-in library settings.

Configuration File Format

The following code snippet shows the typical contents of a .JSON configuration file.

{

 "URLS": "https://localhost:43207",

 "PLUGINLIBRARY":{

 "MAX_UPLOAD_SIZE": "300mb"

 }

}

Configuration File Name and Location

You must name your configuration file pluginlibrary.json.

Configuration files must be saved at the following paths, depending on your OS:

• Windows:
%localappdata%\National Instruments\PluginLibrary\pluginlibrary.json

• Linux: $HOME\.config\ni\pluginlibrary.json

Using a Plug-In Library Using a Plug-In Library
Once you have created a plug-in library, you can interact with it using the command
line interface (CLI). The following sections describe how to make changes to a plug-in

Plug-In Library

62 ni.com

library using CLI commands.

Adding a Service to a Plug-In Library

Complete the following steps to add a new service to a plug-in library.

Enter the following command: nipluginlib publish path --url
The following example shows how to use the publish command:
nipluginlib publish C:\services\ai\single_channel --exclude .venv/**/* --force -u

http://pluginlib.mycompany.com:43100

Where:

• --exclude specifies to not publish any files in .venv to the library.
• --force instructs the server to over-write the existing service in the library.
• -u specifies the server URL.

Removing Services from a Plug-In Library

Complete the following steps to remove a service from the plug-in library using the
CLI.

Before removing a service from a library, you must know its ID. This information can be
found by using the list command. See Listing Plug-In Library Contents.
Enter the following command: nipluginlib delete id --url.

Listing Plug-In Library Contents

Complete the following steps to view plug-in library contents via the CLI.

Enter the following command: nipluginlib list --url

Note To access the command line interface, open a terminal and enter
nipluginlib.

Note Either -u or --url can be used to specify the library URL.

Plug-In Library

© National Instruments 63

Plug-In Versioning Plug-In Versioning
Creating versioned measurement plug-ins enables development and deployment
alignment, as well as traceability. Plug-in versioning is supported in TestStand and
InstrumentStudio. The following sections describe how to implement versioning with
your developed plug-ins.

Versioning Plug-Ins Using Python

Complete the following steps to add version numbering to your Python-developed
measurement plug-in.

1. Open the service configuration file (.serviceconfig) for the measurement
plug-in you want to version.

2. Specify the new version number in the the version field.
3. Remove the version parameter from any instances of the

MeasurementService class.

Versioning Plug-Ins Using LabVIEW

This section describes how to implement versioning for LabVIEW-developed
measurement plug-in.

Implementing Versioning when Developing LabVIEW Measurement Plug-
Ins

To implement versioning for your measurement plug-in, open Get Measurement
Details.vi within your measurement plug-in library (.lvlib) and specify the
version number in the version field in the measurement details cluster.

Note You must use Python SDK version 2.1.0 or newer to version plug-ins.

Note Plug-ins developed with Python do not auto-increment versions. You
must repeat this process each time you create a new version of a plug-in.

Plug-In Library

64 ni.com

Incrementing Plug-In Versions using LabVIEW

To create a new version of a measurement plug-in, open the Get Measurement
Details.vi, select the diagram view, and enter the new version number in the
version field in the measurement details cluster.

Note You must enter the version number in the diagram view in LabVIEW.
Changes made to the VI front panel will not be applied to the plug-in.

Note Modifying the version number within the Version Information section
of your plug-in build specification will not change the plug-in version. This
version information only applies to the build itself.

Plug-In Library

© National Instruments 65

Using Measurements in Custom Applications Using Measurements in Custom Applications
Measurement Plug-In uses the cross-platform, open-source gRPC framework to
maximize performance and interoperability. You can use gRPC calls to interact with
your measurement logic while your measurement is running as a service. Deploy your
measurement plug-in to allow the Measurement Plug-In discovery service to
automatically start your measurement service.

Related concepts:

• Understanding Measurement Plug-In Behavior

Related tasks:

• Statically Register a Measurement Service

Related information:

• gRPC Framework Website (grpc.io)

Using Measurements in Custom Applications

66 ni.com

https://grpc.io/

Measurement Development and Usage Best Measurement Development and Usage Best
Practices Practices
This topic describes patterns that may be useful as you develop or use a
measurement.

• Cancellation—Not all drivers handle cancellation in the same way.
• For drivers that support cancellation or asynchronous abort, you must still

handle the gRPC cancellation and forward it to the driver API.
• For drivers that do not support cancellation or asynchronous abort, break long

API calls and waits into shorter iterations and handle cancellation events
between iterations.

• Progressive UI Updates—For best performance with continuously running
measurements, maximize the time between UI measurement data updates.
Continuous, rapid UI updates while a measurement runs may reduce
measurement performance.

• Python Decorators—Decorators must be listed in the same order as the
measurement function signature parameters and return values.

• Session Management—

For best performance, use the Measurement Plug-In API to manage sessions
whenever possible. Consult the examples for the latest Measurement Plug-In
release to understand how to structure calls to the API and efficiently configure a
measurement in TestStand. The following text describes general principles and
best practices associated with session management.

Calling the ReserveSessions() method instructs the session management service to
block access to a session. If you reserve an instrument session, you must unreserve
it before it is accessible to other callers.

• Be sure to handle error cases where an error occurs after a session is reserved
but before the session is used.

• Make use of the TimeoutInMilliseconds parameter.
• Do not reserve sessions for pins that your measurement does not use.

Calling the RegisterSessions() method indicates that the instrument driver session

Measurement Development and Usage Best Practices

© National Instruments 67

is open. This information is used by other callers to determine if they should close
the instrument session when they are done with it.

• Reserve a session before you attempt to register or unregister it.
• Do not register a session if you did not open it.
• Do not close a session if you did not register the session.

In general, you should not register or unregister sessions within your measurement
logic. Instead, you should normally register and unregister sessions as part of the
setup or cleanup phases of your execution framework. For example, refer to Using
Driver Sessions in TestStand.

The session management service depends on the NI gRPC Device Server (gRPC-
device). Once a gRPC-device session is opened it is cached and subsequent open
calls do not create new sessions. Closing a gRPC-device session closes the
underlying sessions. For best performance, reuse sessions whenever possible
rather than creating new sessions.

• TestStand Best Practices—

For best performance, use the Measurement Plug-In API to manage sessions
whenever possible. Consult the examples for the latest Measurement Plug-In
release to understand how to structure calls to the API and efficiently configure a
measurement in TestStand. The following text describes general principles and
best practices associated with session management. Consider the following
practices and tips while working with sessions in TestStand.

• Reserve, open, and register all instrument sessions in the ProcessSetup
sequence to initialize sessions once and reduce overhead for individual
measurements in the test sequence.

• Specify the InstrumentTypeId parameter when calling ReserveSessions() or
ReserveAllRegisteredSessions() to limit reserved sessions to a specific
instrument type.

• Do not use ReserveAllRegisteredSessions() before opening and registering
instrument sessions.

Measurement steps in TestStand cache measurement service connections. If you
restart the measurement service while the sequence is open, you may invalidate
cached connections and produce a networking error. If a measurement step
returns a networking error (such as "connection refused"), the following actions

Measurement Development and Usage Best Practices

68 ni.com

may clear the error:

• Select File » Unload All Modules.
• Refresh the measurement parameters.

Enabling monitoring in TestStand may impact measurement performance. Do not
enable monitoring unless it is necessary for your application.

• Log Files—Log files can be found in C:\ProgramData\National
Instruments\MeasurementPlugin\Logs.

Measurement Development and Usage Best Practices

© National Instruments 69

Supported Datatypes Supported Datatypes
Measurement Plug-In supports the following datatypes:

• Signed integers
◦ Int32
◦ Int64

• Unsigned integers
◦ UInt32
◦ UInt64

• Floating-point numbers
◦ Float (32-bit floating-poing number)
◦ Double (64-bit floating-point number)

• Boolean
• String

◦ Pin (string type specialization)
◦ Path (string type specialization)

• 1D array (supported for all base datatypes and type specializations)
• Enum
• XY data

Supported Datatypes

70 ni.com

API Reference API Reference
Refer to the Related Information section on this page to access API reference
documentation for Measurement Plug-In.

Related information:

• Measurement Plug-In

API Reference

© National Instruments 71

https://ni.github.io/measurement-plugin-python/

Measurement Plug-InMeasurement Plug-In Architecture and Data Architecture and Data
Flow Flow
The topics in this section describe individual Measurement Plug-In services, relevant
data flow interactions, and other considerations.

Understanding the Discovery Service Understanding the Discovery Service
The Measurement Plug-In discovery service provides a registry of other services, and
can discover and activate other services on the system. These features allow the
discovery service to distinguish, manage, and describe measurement services on the
system.The Measurement Plug-In discovery service runs automatically when
InstrumentStudio or TestStand enumerate available measurement services. To ensure
that the discovery service is running, follow the initial steps for adding and running a
measurement in either InstrumentStudio or TestStand.

Registering a Measurement Service with the Discovery Service

Activating a measurement service requires a *.serviceconfig file which includes
information describing the service. Services that register a *.serviceconfig file
must call RegisterService() when the service starts or registration will never succeed
when the discovery service attempts to start the measurement service.

Enumerating Registered Measurement Services

Call the EnumerateServices() method to return the list of registered measurement
services.

Related concepts:

• Understanding Measurement Plug-In Behavior

Related tasks:

• Statically Register a Measurement Service

Measurement Plug-In Architecture and Data Flow

72 ni.com

Related information:

• Discovery Service Proto File

Understanding the gRPC Device Server Activation Understanding the gRPC Device Server Activation
Service Service
The Measurement Plug-In gRPC Device Server Activation Service ensures that NI gRPC
Device Server is available for Measurement Plug-In. When you resolve the service class
ni. ni_measurement_plugin_sdk .v1.grpcdeviceserver, Measurement Plug-In
gRPC Device Server Activation Service launches NI gRPC Device Server with a dynamic
port assignment to avoid collision with any existing instances of NI gRPC Device Server.
The port number is then registered with the Measurement Plug-In Discovery Service.

Identifying the NI gRPC Device Server Port

To determine the NI gRPC Device Server port, query the Measurement Plug-In
Discovery Service using the ni. ni_measurement_plugin_sdk
.v1.grpcdeviceserver service class and one of the provided interfaces listed in the
GrpcDeviceServerActivationService.serviceconfig file:

• nidaqmx_grpc.NiDAQmx
• nidcpower_grpc.NiDCPower
• nidigitalpattern_grpc.NiDigital
• nidmm_grpc.NiDmm
• nifgen_grpc.NiFgen
• niscope_grpc.NiScope
• niswitch_grpc.NiSwitch

You can also manually edit the server_config.json file found in the same
directory as NationalInstruments. MeasurementPlugin
.GrpcDeviceServerActivationService.exe to specify a static port
assigment.

The default location for both the
GrpcDeviceServerActivationService.serviceconfig and
server_config.json files is <Program Files>\National Instruments\

Measurement Plug-In Architecture and Data Flow

© National Instruments 73

https://github.com/ni/measurementlink-python/blob/main/ni_measurementlink_service/_internal/stubs/proto/ni/measurementlink/discovery/v1/discovery_service.proto

Shared\ Plug-Ins \Services\gRPC Device Server Activation\.

Understanding the Driver Session Management Service Understanding the Driver Session Management Service
The session management service manages driver sessions and driver session access.
Use driver or channel information from a pin map to specify the appropriate sessions
for NI driver software. This allows you to write pin-aware measurements and avoid
directly addressing I/O channels. The driver session management service tracks driver
session registration to ensure that only one measurement service accesses a driver
session at a time.

This section describes the behavior and data flow for session management in . The API
simplifies session management, and should be used whenever possible to manage
sessions for supported NI driver software.

Figure 1. Pin Map, Session, and Instrument Call Data Flow

Session Management Service

Reserve, Open,
Register, and

Unreserve Instrument
Driver Sessions

Reserve
Instrument Driver

Sessions

Unreserve
Instrument Driver

Sessions

Reserve, Close,
Unregister, and

Unreserve Instrument
Driver Sessions

Your Measurement Service

Pin Map Service

Call Measurement Service
Analyze Data and

Update UI
Complete
Execution

Register
Pin Map

NI gRPC Device Server

Make Instrument Calls
to Control Hardware

and Acquire Data

Pin Map Path

Pin
Information

Pin Map Information
(Session Types)

Pin Map
Information

Configuration
Values

Session
Status

Software Application

1

2 4 9

Close or Detach
Instrument Driver

Sessions

8

Initialize
Instrument Driver

Sessions

5 11

3 7 10

6

1. The software application registers the pin map with the pin map service.
2. The software application calls the session management service to instantiate

required instrument driver sessions. The application reserves, opens, registers,
and finally unreserves the driver sessions.

3. The application calls your measurement service, which executes the measurement
logic.

4. The measurement service calls the session management service to reserve a
required driver session. For GPIB, serial, or LXI instruments, use NI-VISA to perform
session management. The session management service returns session

Measurement Plug-In Architecture and Data Flow

74 ni.com

information, including session status.
5. The measurement service initializes instrument driver sessions, either by creating

new sessions on the NI gRPC Device Server or attaching to an existing session.
6. Your measurement service makes instrument calls via NI instrument drivers that

support gRPC.
1. If a driver does not provide a gRPC interface you can use gRPC directly to

communicate with your instrument. In Python, use the grpcio module. In
LabVIEW, use grpc-labview (available in github). Refer to the examples for NI
gRPC Device Server for additional implementation details.

2. For GPIB, serial, or LXI instruments, use NI-VISA to control your instrument.
7. Your measurement service performs data analysis and updates the measurement

UI.
8. The measurement service closes or detaches instrument driver sessions.
9. Your measurement service calls the session management service to unreserve the

instrument driver session once the measurement completes.
10. Your measurement service completes execution and returns values to the software

application.
11. The software application reserves, closes, unregisters, and unreserves the

instrument driver sessions.

Controlling Access to Driver Sessions

The Measurement Plug-In session management service provides a reservation
mechanism to ensure that only one measurement at a time has access to each driver
session. This prevents measurements from changing the state of an instrument that is
in use by another measurement.

The Measurement Plug-In session management service reserves each driver session
when a measurement retrieves driver session information via the ReserveSessions() or
ReserveAllRegisteredSessions() methods. If a driver session is already reserved by
another measurement, these methods wait until either the driver session becomes
unreserved or the timeout expires.

Accessing Open Driver Sessions

The Measurement Plug-In session management service ensures that only one
measurement at a time has access to each driver session. This prevents measurements

Measurement Plug-In Architecture and Data Flow

© National Instruments 75

from changing the state of an instrument that is in use by another measurement.

To attach to a driver session within your measurement logic, first ensure that you have
sessions registered with the Session Management service. Refer to Using Driver
Sessions in TestStand for more information.

Within your measurement logic, use the ReserveSessions() method to access the driver
session information.

Some measurements must use the session_exists Boolean to determine whether to
perform one-time setup.

• NI-DAQmx—Create or add channels to the task only when initializing a new task on
the server (and session_exists is False).

• NI-Digital Pattern Driver—Loading files (for example, specifications, patterns, or
pin maps) into the session will produce an error if the files were previously loaded.
Checking that session_exists is False is a good way to avoid loading files multiple
times. You can also explicitly unload files.

Table 9. Boolean value descriptions for session_exists

Value of session_exists Description Notes

false
The driver session has not been
initialized.

Your measurement logic should
initialize (and later close) the
driver session.

true
The driver session has been
initialized.

Your measurement logic should
not attach or detach to the
driver session.

Be sure to call the UnreserveSessions() method when your measurement is finished
using a driver session. You must call this method even when an exception or error
causes your measurement to exit to ensure that sessions are not reserved indefinitely.
If you are using LabVIEW, the Measurement Plug-In LabVIEW API handles this
requirement automatically.

If a measurement service service crashes or closes while it has reserved a driver
session, subsequent reservations will trigger the specified reserve session timeout
behavior. In order to recover, you must restart the discovery service as well as any
manually-launched measurements.

Measurement Plug-In Architecture and Data Flow

76 ni.com

Supply a TimeoutInMilliseconds parameter to a reserve method to specify a behavior
while waiting for the reservation to succeed:

Table 10. Reserve Session Timeout Behavior

Value Behavior

-1 Specifies no timeout. The measurement will wait
indefinitely until the session can be reserved.

0 (default) Specifies that an exception occurs immediately if
the session cannot be reserved.

Any positive numeric value
Specifies a timeout, in milliseconds, after which
an exception occurs if the session cannot be
reserved.

Sharing Driver Sessions between Multiple Measurement Services

This topic describes generally how a measurement service should connect to an
instrument session depending on the instrument or instrument driver in use.

Measurement Plug-In supports session management for a subset of NI driver software.
The following figure lists those drivers and their support for gRPC, including:

• Whether a driver is supported by NI gRPC Device Server
• Whether a driver provides a native gRPC interface for a supported software

language

Use the criteria in this table to determine the suitability of any driver for your
application. Drivers which do not provide native gRPC support must make explicit
gRPC calls to the NI gRPC Device Server.

Table 11. gRPC support in target drivers (as of 2024 Q1, earliest supported driver versions listed for
each feature)

Supported NI
driver software

Driver supported by
NI gRPC Device
Server

Driver version implements
native gRPC interface
(Python)

Driver version implements
native gRPC interface
(LabVIEW)

NI-DAQmx ✔ 2023 Q3 –

NI-DCPower ✔ 2023 Q1 2023 Q1

Measurement Plug-In Architecture and Data Flow

© National Instruments 77

Supported NI
driver software

Driver supported by
NI gRPC Device
Server

Driver version implements
native gRPC interface
(Python)

Driver version implements
native gRPC interface
(LabVIEW)

NI-Digital
Pattern Driver ✔ 2023 Q1 2023 Q2

NI-DMM ✔ 2023 Q1 2023 Q2

NI-FGEN ✔ 2023 Q1 2023 Q2

NI-SCOPE ✔ 2023 Q1 2023 Q2

NI-SWITCH ✔ 2023 Q1 –

NI-VISA (GPIB,
serial, LXI
interfaces)

✔ (as of 2024 Q1) – –

NI-DCPower, NI-Digital Pattern Driver, NI-DMM, NI-FGEN, NI-SCOPE, NI-
SWITCH

Measurement services must make gRPC calls to the NI gRPC Device Server in order to
create or attach to a session, perform the measurement, and destroy or detach from
the session. Use the Measurement Plug-In API to handle session management calls for
these drivers.

1. In Python, the driver API will make the gRPC calls for you if you specify the
grpc_options parameter for the Session constructor.

2. In LabVIEW, the driver API will make the gRPC calls for you if you use the gRPC-
specific Initialize/Attach VIs.

NI-DAQmx

Measurement services should make explicit gRPC calls to the NI gRPC Device Server in
order to create or attach to a task, perform the measurement, and destroy or detach
from the task.

NI-VISA

Instruments connected via GPIB, serial, or LXI interfaces can use NI-VISA for session
management. Registering the session ensures that only one measurement service

Measurement Plug-In Architecture and Data Flow

78 ni.com

communicates with the instrument at any given time. For an example, refer to the
Keysight 34401A DMM Measurement example files.

Understanding the Pin Map Service Understanding the Pin Map Service
The pin map service retrieves information from a registered pin map. This information
is used by the session manager service. Do not call into the pin map service directly
(except to register or unregister the pin map). Instead, use the session manager
service, which wraps around the pin map service. The pin map service can retrieve lists
of pins, pin groups, or relays; session or resource names; or instrument channels for a
pin.

Accessing Pin Maps in Measurement Logic

When a pin map is configured properly in InstrumentStudio or TestStand, those
applications will pass a PinMapContext object to your measurement service. This
object contains an identifier for the pin map as well as a target site number. The
PinMapContext object is a required input for many session management API methods.

Using Pin Maps with Measurements in InstrumentStudio

To register a pin map for a measurement in InstrumentStudio, ensure that the project
contains an active pin map. Refer to the related information section for more
information about setting an active pin map in InstrumentStudio.

Using Pin Maps with Measurements in TestStand

Refer to Using Driver Sessions in TestStand for more information about setting
an active pin map in TestStand.

Related tasks:

Note Activating a pin map in software does not interact with the pin map
service. Instead, activating a pin map allows the software application to
specify the pin map to be used with a measurement.

Measurement Plug-In Architecture and Data Flow

© National Instruments 79

• Using Driver Sessions in TestStand

Related information:

• Setting an Active Project Pin Map

Measurement Plug-In Pin Map Service: Supported Instruments

Refer to the Related Information section on this page to access the
Measurement Plug-In Pin Map service *.proto file, which lists supported
instruments.

Related information:

• Pin Map Service Proto File

© 2025 National Instruments Corporation.

Measurement Plug-In Architecture and Data Flow

80 ni.com

https://www.ni.com/docs/en-US/bundle/instrumentstudio/page/set-active-project-pin-map.html
https://github.com/ni/ni-apis/blob/main/ni/measurementlink/pinmap/v1/pin_map_service.proto

	Measurement Plug-In Overview
	Measurement Plug-In Workflow
	Measurement Plug-In Architecture
	Understanding Measurement Plug-In Behavior
	Pin Maps and Hardware-Based Measurements

	New Features and Changes
	2024 Q4
	New Features

	2024 Q3
	Changes
	New Features
	InstrumentStudio

	MeasurementLink 2024 Q2
	MeasurementLink 2024 Q1
	MeasurementLink 2023 Q4
	MeasurementLink 2023 Q3
	MeasurementLink 2023 Q2
	MeasurementLink 2023 Q1

	Installing Measurement Plug-In
	Examples
	Python Measurement Development Dependencies
	LabVIEW Measurement Development Dependencies

	Developing a Measurement Plug-In with Python
	Creating a Python Measurement Plug-In
	Configuring a Python Measurement Plug-In
	Setting Environmental Variables

	Starting a Python Measurement Service
	Statically Register a Measurement Service
	Considerations when Deploying Python Measurement Plug-Ins
	Service Configuration File Template

	Python Measurement Plug-In Generator Parameters
	Python Measurement Plug-In File Descriptions

	Developing a Measurement Plug-In Client with Python
	Creating a Python Measurement Plug-In Client using Batch Mode
	Python Measurement Plug-In Client Generator Batch Mode Parameters
	Creating a Python Measurement Plug-In Client using Interactive Mode
	Python Measurement Plug-In Client Usage

	Developing a Measurement Plug-In with LabVIEW
	Creating a LabVIEW Measurement Plug-In
	Configuring a LabVIEW Measurement Plug-In
	Setting Pin or Path Behavior

	Starting a LabVIEW Measurement Service
	Creating an Executable for a LabVIEW Measurement

	Statically Register a Measurement Service
	LabVIEW Measurement Plug-In Project File Descriptions
	LabVIEW Measurement Plug-In Details

	Developing a Measurement Plug-In Client with LabVIEW
	Creating a LabVIEW Measurement Plug-In Client
	LabVIEW Measurement Plug-In Client Project File Descriptions
	Registering a Pin Map for a LabVIEW Measurement Plug-In Client
	Running a LabVIEW Measurement Plug-In Client

	Developing a User Interface for a Measurement Plug-In
	Creating a UI File
	Linking the UI with Measurement Data
	Specify the Measurement UI

	Creating and Using Pin Maps
	Managing Pin Map Files
	Pin Map Contents
	Editing Pin Maps
	Adding Items to a Pin Map
	Pin Map Connections
	Accessing the Connections Table
	Filtering the Connections Table View
	Changing Connection Configurations

	Driver Instrument Reference
	General Information
	DCPower
	Digital Pattern
	DMM
	SCOPE
	FGEN
	DAQmx
	Custom Instrument

	Running a Measurement from InstrumentStudio
	Running a Measurement from TestStand
	Using a Pin Map to Enhance Automation
	Using the Session Manager Service
	Using Driver Sessions in TestStand
	Accessing Sequence File Callbacks
	Creating the ProcessSetup Sequence
	Creating the ProcessCleanup Sequence

	Monitoring or Debugging Measurements
	Debugging Tips
	Debugging Tools
	Displacing Statically Registered Measurement Services

	Plug-In Library
	Plug-In Library Installation
	Windows Installation
	Linux Installation

	Starting a Plug-In Library
	Plug-In Library Settings
	Changing Maximum Upload Size
	Changing the Default Host and Port
	Assigning Port and Host Addresses via Environment Variables

	Plug-In Library Configuration Files
	Configuration File Format
	Configuration File Name and Location

	Using a Plug-In Library
	Adding a Service to a Plug-In Library
	Removing Services from a Plug-In Library
	Listing Plug-In Library Contents

	Plug-In Versioning
	Versioning Plug-Ins Using Python
	Versioning Plug-Ins Using LabVIEW
	Implementing Versioning when Developing LabVIEW Measurement Plug-Ins
	Incrementing Plug-In Versions using LabVIEW

	Using Measurements in Custom Applications
	Measurement Development and Usage Best Practices
	Supported Datatypes
	API Reference
	Measurement Plug-In Architecture and Data Flow
	Understanding the Discovery Service
	Registering a Measurement Service with the Discovery Service
	Enumerating Registered Measurement Services

	Understanding the gRPC Device Server Activation Service
	Identifying the NI gRPC Device Server Port

	Understanding the Driver Session Management Service
	Controlling Access to Driver Sessions
	Accessing Open Driver Sessions
	Sharing Driver Sessions between Multiple Measurement Services
	NI-DCPower, NI-Digital Pattern Driver, NI-DMM, NI-FGEN, NI-SCOPE, NI-SWITCH
	NI-DAQmx
	NI-VISA

	Understanding the Pin Map Service
	Accessing Pin Maps in Measurement Logic
	Using Pin Maps with Measurements in InstrumentStudio
	Using Pin Maps with Measurements in TestStand

	Measurement Plug-In Pin Map Service: Supported Instruments

