

AWG70001B and AWG70002B Arbitrary Waveform Generators Specifications and Performance Verification Includes AWGSYNC01 Synchronization Hub Specifications

Technical Reference

Tektronix[®]

AWG70001B and AWG70002B Arbitrary Waveform Generators Specifications and Performance Verification Includes AWGSYNC01 Synchronization Hub Specifications

Technical Reference

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries before performing service.

www.tek.com

077-1453-00

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tek.com to find contacts in your area.

Table of Contents

General safety summary	v
Service safety summary	vii
Preface	ix
Related documents	ix
Specifications	1
Performance conditions	1
Electrical specifications	2
Mechanical characteristics	20
Environmental characteristics	22
AWGSYNC01	23
Electrical specifications	23
Mechanical characteristics	26
Performance verification procedures	27
Input and output options	28
Instrument interface overview	29
Brief procedures	33
Diagnostics	33
Calibration	34
Functional test	36
Performance tests	49
Prerequisites	49
Required equipment	49
10 MHz reference frequency accuracy	51
Analog amplitude accuracy	52
Marker high and low level accuracy	56
Test record	61

List of Figures

21
34
35
37
39
40
42
43
44
45
46
51
52
53
56

List of Tables

Table i: Related documents	ix
Table 1: Run mode	2
Table 2: Arbitrary waveform	2
Table 3: Sample clock generator	3
Table 4: Analog output.	3
Table 5: SFDR, AWG70001B and AWG70002B operating at 25 GS/s ¹	7
Table 6: SFDR, AWG70001B operating at 50 GS/s ¹	7
Table 7: SFDR, AWG70002B operating at 8 GS/s ¹	8
Table 8: SFDR, AWG70002B operating at 16 GS/s ¹	8
Table 9: Phase noise with jitter reduction, AWG70001B operating at 50 GS/s	8
Table 10: Phase noise with jitter reduction, AWG70001B and AWG70002B operating at 25 GS/s	9
Table 11: Phase noise with jitter reduction, AWG70002B operating at 8 GS/s	9
Table 12: Phase noise with jitter reduction, AWG70002B operating at 16 GS/s	9
Table 13: Phase noise without jitter reduction, AWG70001B operating at 49.998998 GS/s	10
Table 14: Phase noise without jitter reduction, AWG70001B and AWG70002B operating at	
24.998998 GS/s	10
Table 15: Phase noise without jitter reduction, AWG70002B operating at 7.998997998 GS/s	10
Table 16: Phase noise without jitter reduction, AWG70002B operating at 15.998997998 GS/s	10
Table 17: AC analog output (AWG70001B, Option AC)	11
Table 18: Marker output Marker output	13
Table 19: Clock output	14
Table 20: Clock input	14
Table 21: Trigger input	14
Table 22: Reference clock input	15
Table 23: Sync clock output.	16
Table 24: Sequencer.	16
Table 25: Pattern Jump Input.	17
Table 26: Streaming ID connector	18
Table 27: Aux out connectors	18
Table 28: 10 MHz reference clock output	19
Table 29: Sync port.	19
Table 30: CPU module and peripheral devices.	19
Table 31: Display	19
Table 32: Power supply	20
Table 33: Mechanical characteristics.	20
Table 34: Environmental characteristics	22
Table 35: Electrical specifications	23
Table 36: Power supply	26

Table 37: Mechanical characteristics	26
Table 38: Required equipment for the functional test	36
Table 39: Test waveforms	36
Table 40: Required equipment for performance tests	49
Table 41: Performance test waveforms	50
Table 42: Analog amplitude accuracy	54
Table 43: Marker high level accuracy	57
Table 44: Marker low level accuracy	59

General safety summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it.

To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

To avoid fire or personal injury Use proper power cord. Use only the power cord specified for this product and certified for the country of use.

Ground the product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

Observe all terminal ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Power disconnect. The power cord disconnects the product from the power source. Do not block the power cord; it must remain accessible to the user at all times.

Do not operate without covers. Do not operate this product with covers or panels removed.

Do not operate with suspected failures. If you suspect that there is damage to this product, have it inspected by qualified service personnel.

Avoid exposed circuitry. Do not touch exposed connections and components when power is present.

Do not operate in wet/damp conditions.

Do not operate in an explosive atmosphere.

Keep product surfaces clean and dry.

Provide proper ventilation. Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Terms in this manual

These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Symbols and terms on the product

These terms may appear on the product:

- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.

The following symbol(s) may appear on the product:

(Earth) Terminal

al Chassis Ground

 \mathcal{H}

Standby

Service safety summary

Only qualified personnel should perform service procedures. Read this *Service safety summary* and the *General safety summary* before performing any service procedures.

Do not service alone. Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

Disconnect power. To avoid electric shock, switch off the instrument power, then disconnect the power cord from the mains power.

Use care when servicing with power on. Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

To avoid electric shock, do not touch exposed connections.

Preface

This manual contains specifications and performance verification procedures for the AWG70000B Series Arbitrary Waveform Generators and the AWGSYNC01 Synchronization Hub.

Related documents

The following user documents are also available for this product.

The documents are available for download from the Tektronix website.

ltem	Description
AWG70000B Series Installation and Safety Manual	This document provides safety information and how to install the AWG70000B generators.
	Tektronix Part Number 0713597xx
AWGSYNC01 Installation and Safety Manual	This document provides safety information and how to install the AWGSYNC01 Synchronization Hub.
	Tektronix Part Number 0713292xx
AWG70000 Series Programmer	This document provides programming information.
	0771452xx
AWG70000 Series Help System (converted to PDF)	This document is a PDF output of the entire AWG70000 help system.
	Tektronix Part Number 0771446xx

Preface

Specifications

This section contains the specifications for the AWG70000B series Arbitrary Waveform Generators and the AWGSYNC01 Synchronization Hub. The generators are covered together in the first part, followed by the separate AWGSYNC01 information.

All specifications are typical unless noted as warranted. Warranted specifications marked with the \nvdash symbol are checked in this manual.

Performance conditions

To meet specifications, the following conditions must be met:

- The instrument must have been calibrated/adjusted at an ambient temperature between +20 °C and +30 °C.
- The instrument must be operating within the environmental limits. (See Table 34 on page 22.)
- The instrument must be powered from a source that meets the power specifications. (See Table 32 on page 20.)
- The instrument must have been operating continuously for at least 20 minutes within the specified operating temperature range.

Electrical specifications

Table 1: Run mode

Characteristics	Description
Continuous mode	A waveform is output continuously.
Triggered mode	A waveform is output only once when a trigger signal is applied. After the waveform is output, the instrument waits for the next trigger signal.
Triggered continuous mode	A waveform is output continuously after a trigger signal is applied.

Table 2: Arbitrary waveform

Characteristics	Description	
Waveform memory		
AWG70001B		
Standard	2 G (2^{31}) samples	
With optional memory expansion	16 G (2^{34}) samples when sample rate is <25 GS/s (non-interleaved)	
	32 G (2^{35}) samples when sample rate is >25 GS/s (interleaved)	
AWG70002B		
Standard	2 G (2^{31}) samples per channel	
With optional memory expansion	16 G (2^{34}) samples per channel	
Minimum waveform size		
AWG70001B		
Continuous run mode	1 point	
Triggered run modes	4800 points	
AWG70002B		
Continuous run mode	1 point	
Triggered run modes	2400 points	
Waveform granularity		
AWG70001B		
Continuous run mode	2 points	
Triggered run modes	2 points	
AWG70002B		
Continuous run mode	1 point	
Triggered run modes	1 point	
Waveform interleaving	Interleaving is performed without zeroing.	
AWG70001B	Non-interleaved when ≤25 GS/s, interleaved when >25 GS/s	
AWG70002B	Non-interleaved at all sample rates	
DAC resolution	8-bit, 9-bit, or 10-bit	
	10-bit mode, markers are not available	
	9-bit mode, marker M1 is available 8-bit mode, markers M1 and M2 are available	
	o bit mode, markers with and wizh are available	

Table 3: Sample clock generator

Characteristics	Description
Range	
AWG70001B Option 150	1.49 kS/s to 50 GS/s
AWG70002B Option 225	1.49 kS/s to 25 GS/s
AWG70002B Option 216	1.49 kS/s to 16 GS/s
AWG70002B Option 208	1.49 kS/s to 8 GS/s
Resolution	
With jitter reduction	3 digits
Without jitter reduction	8 digits
Phase adjustment	Used to manually align the outputs with other generators or instruments.
Range	-10,800° to +10,800°
Resolution	1°
Table 4: Analog output	
Characteristics	Description
Connector type	Aeroflex/Weinschel Planar Crown Universal Connector System with SMA female adapter
Number of outputs	AWG70001B: 1
	AWG70002B: 2
Type of outputs	(+) and (-) complementary output
ON/OFF control	Independent control for each analog output complementary pair
Output impedance	50 Ω
VSWR	
AWG70001B	DC to ≤5 GHz = 1.32:1
	>5 GHz to ≤10 GHz = 1.52:1
	>10 GHz to 20 GHz = 1.73:1
AWG70002B	DC to 10 GHz = 1.61:1
Amplitude	Independent control for each channel
Range	0.25 V_{p-p} to 0.5 V_{p-p} into 50 Ω single-ended
	0.5 $V_{p,p}$ to 1.0 $V_{p,p}$ into 100 Ω differential
Resolution	1 mV
DC accuracy (warranted)	±(2% of amplitude + 1 mV)
Amplitude flatness	Flatness is measured as the deviation from the ideal $sin(x)/x$ response curve of the DAC at the specified sample rate. The response is mathematically removed from the measured data.
AWG70001B	+1.8 dB to -1.8 dB up to 10 GHz

+1.8 dB to –3 dB from 10 GHz to 15 GHz

+0.8 dB to -1.5 dB up to 10 GHz

AWG70002B

Table 4: Analog output (cont.)

Characteristics	Description
Sin(x)/x bandwidth	The sin(x)/x bandwidth can be solved for using the following equation:
	$20 * \log (\sin(x)/x) = -3$
	For interleaved waveforms: $x = 2\pi$ * fout ÷ fsample
	For non-interleaved waveforms: $x = \pi^*$ fout \div fsample
	fsample = sample rate
	fout = sin(x)/x bandwidth
AWG70001B	≤ 25 GS/s (non-interleaved): 11.1 GHz × fsample ÷ 25 GS/s
	> 25 GS/s (interleaved): 11.1 GHz × fsample ÷ 50 GS/s
AWG70002B	11.1 GHz * fsample ÷ 25 GS/s
Analog bandwidth	Analog bandwidth is measured with the ideal sin(x)/x response curve of the DAC mathematically removed from the measured data.
AWG70001B	15 GHz at 50 GS/s
AWG70002B	13.5 GHz at 25 GS/s
Rise/fall time	When operating in interleaved mode, rising and falling edges are created using two sample points. As a result, the rise/fall time is dependent on the sample rate.
AWG70001B	≤ 25 GS/s: < 23 ps
	at 30 GS/s: < 42 ps
	at 40 GS/s: < 32 ps
	at 50 GS/s: < 27 ps
AWG70002B	< 22 ps
Aberrations	<18% $_{p-p}$ for the first 100 ps following the step transition with 100% reference at 1 ns.
Skew between (+) and (-) outputs	< 5 ps

Table 4: Analog output (cont.)

Characteristics	Description		
Harmonic distortion	Measured with a balun.		
AWG70001B and AWG70002B			
Operating at 25 GS/s	Output Frequency	2nd harmonic	
	<2 GHz	< -60 dBc	
	2 GHz – 6 GHz	< –50 dBc	
	>6 GHz	< -42 dBc	
		3rd harmonic	
	<1 GHz:	< -60 dBc	
	1 GHz – 2 GHz	< –50 dBc	
	>2 GHz	< -40 dBc	
AWG70002B			
Operating at 8 GS/s	Output Frequency	2nd harmonic	
	<1 GHz	< -60 dBc	
	1 GHz – 3.2 GHz	< –55 dBc	
		3rd harmonic	
	<1 GHz:	< -60 dBc	
	1 GHz – 3.2 GHz	< -50 dBc	
Operating at 16 GS/s		2nd harmonic	
	<1 GHz	< -60 dBc	
	1 GHz – 4 GHz	< –55 dBc	
	>4 GHz	< –50 dBc	
		3rd harmonic	
	<1 GHz:	< -60 dBc	
	1 GHz – 2 GHz	< –50 dBc	
	>2 GHz	< -40 dBc	
SFDR			
AWG70001B and .AWG70002B operating at 25 GSs	(See Table 5 on page 7.)		
AWG70001B operating at 50 GSs	(See Table 6 on page 7.)		
AWG70002B operating at 8 GSs	(See Table 7 on page 8.)		
AWG70002B operating at 16 GSs	(See Table 8 on page 8.)		

Table 4: Analog output (cont.)

Characteristics	Description
ENOB	
AWG70001B	4.6 bits at 14.990 GHz
	All noise and distortion DC - 20 GHz
AWG70002B	5.6 bits at 9.990 GHz
	All noise and distortion DC - 12.5 GHz
Phase noise with jitter reduction	
AWG70001B operating at 50 GSs	(See Table 9 on page 8.)
AWG70001B and AWG70002B operating at 25 GSs	(See Table 10 on page 9.)
AWG70002B operating at 8 GSs	(See Table 11 on page 9.)
AWG70002B operating at 16 GSs	(See Table 12 on page 9.)
Phase noise without jitter reduction	
AWG70001B operating at 49.998998 GSs	(See Table 13 on page 10.)
AWG70001B and AWG70002B operating at 24.998998 GSs	(See Table 14.)
AWG70002B operating at 7.998997998 GSs	(See Table 15 on page 10.)
AWG70002B operating at 15.998997998 GSs	(See Table 16 on page 10.)
Random jitter on clock pattern	0.25 ps _{rms}
	Using 0101 clock pattern with 500 mV _{p-p} amplitude.
Total jitter on random pattern	10 ps _{p-p}
	Using PRBS pattern with 500 mV $_{\rm p-p}$ amplitude, measured at Bit Error Rate of 1e $^{-12}$.
Interleave adjustment (AWG70001B only)	
Phase adjustment range	-180° to +180°
Phase adjustment resolution	1°
Amplitude matching range	±10% of amplitude setting
Inter-channel skew control (AWG70002B only)	
Range	–100 ps to +100 ps
Resolution	1 ps
Accuracy	±5 ps

Analog channel output frequency	In band performance measured across	Specification	Adjacent band performance measured across	Specification
100 MHz	DC – 1 GHz	–80 dBc	DC – 10 GHz	–72 dBc
DC – 500 MHz	DC – 500 MHz	–70 dBc	DC – 1.5 GHz	–66 dBc
DC – 1 GHz	DC – 1 GHz	–63 dBc	DC – 3 GHz	–63 dBc
DC – 2 GHz	DC – 2 GHz	–62 dBc	DC – 6 GHz	–60 dBc
DC – 3 GHz	DC – 3 GHz	–60 dBc	DC – 6 GHz	–52 dBc
DC – 5 GHz	DC – 5 GHz	–52 dBc	DC – 6 GHz	–52 dBc
5 – 6 GHz	5 – 6 GHz	–52 dBc	3 – 9 GHz	–40 dBc
6 – 7 GHz	6 – 7 GHz	–42 dBc	4 – 10 GHz	–42 dBc
7 – 8 GHz	7 – 8 GHz	–55 dBc	6 – 12.5 GHz	–50 dBc
8 – 10 GHz	8 – 10 GHz	–50 dBc	6 – 12.5 GHz	–50 dBc

Table 5: SFDR, AWG70001B and AWG70002B operating at 25 GS/s¹

¹ Measured with a balun, excluding harmonics.

Table 6: SFDR, AWG70001B operating at 50 GS/s¹

Analog channel	In hand performance		Adjacent band	
output frequency	measured across	Specification	measured across	Specification
100 MHz	DC – 1 GHz	-80 dBc	DC – 10 GHz	-72 dBc
DC – 500 MHz	DC – 500 MHz	–70 dBc	DC – 1.5 GHz	–66 dBc
DC – 1 GHz	DC – 1 GHz	–63 dBc	DC – 3 GHz	–63 dBc
DC – 2 GHz	DC –2 GHz	–62 dBc	DC – 6 GHz	–60 dBc
DC – 3 GHz	DC –3 GHz	–60 dBc	DC – 6 GHz	–52 dBc
DC – 5 GHz	DC – 5 GHz	–52 dBc	DC – 6 GHz	–52 dBc
5 – 6 GHz	5 – 6 GHz	–52 dBc	3 – 9 GHz	–40 dBc
6 – 7 GHz	6 – 7 GHz	–42 dBc	4 – 10 GHz	–42 dBc
7 – 8 GHz	7 – 8 GHz	–60 dBc	6 – 12.5 GHz	–52 dBc
8 – 10 GHz	8 – 10 GHz	–50 dBc	6 – 12.5 GHz	–52 dBc
10 – 12 GHz	10 – 12 GHz	–53 dBc	6 – 12.5 GHz	–50 dBc
12 – 13 GHz	12 – 13 GHz	–22 dBc	10 – 15 GHz	–22 dBc
13 – 14 GHz	13 – 14 GHz	–54 dBc	11 – 16 GHz	-20 dBc
14 – 16 GHz	14 – 16 GHz	–46 dBc	13 – 18 GHz	–38 dBc

Analog channel output frequency	In band performance measured across	Specification	Adjacent band performance measured across	Specification
16 – 18.5 GHz	16 – 18.5 GHz	–42 dBc	14 – 20 GHz	-30 dBc
18.5 – 20 GHz	18.5 – 20 GHz	–28 dBc	16 – 20 GHz	-24 dBc

Table 6: SFDR, AWG70001B operating at 50 GS/s¹ (cont.)

¹ Measured with a balun, excluding harmonics.

Table 7: SFDR, AWG70002B operating at 8 GS/s¹

Analog channel output frequency	In band performance measured across	Specification	Adjacent band performance measured across	Specification	
100 MHz	DC – 1 GHz	–80 dBc	DC – 3 GHz	–72 dBc	
0 – 500 MHz	DC – 500 MHz	–68 dBc	DC – 1.5 GHz	–66 dBc	
DC – 1 GHz	DC – 1 GHz	–63 dBc	DC – 3 GHz	–63 dBc	
DC – 2 GHz	DC – 2 GHz	–60 dBc	DC – 4 GHz	–60 dBc	
DC – 2.6 GHz	DC –2.6 GHz	–55 dBc	DC – 4 GHz	–52 dBc	
DC – 3.2 GHz	DC – 3.2 GHz	–47 dBc	DC – 4 GHz	–47 dBc	

1 Measured with a balun, excluding harmonics.

Table 8: SFDR, AWG70002B operating at 16 GS/s¹

Analog channel output frequency	In band performance measured across	Specification	Adjacent band performance measured across	Specification	
100 MHz	DC – 1 GHz	–80 dBc	DC – 3 GHz	–72 dBc	
0 – 500 MHz	DC – 500 MHz	–68 dBc	DC – 1.5 GHz	–66 dBc	
DC – 1 GHz	DC – 1 GHz	–62 dBc	DC – 3 GHz	–63 dBc	
DC – 2 GHz	DC – 2 GHz	–60 dBc	DC – 6 GHz	–58 dBc	
DC – 3.5 GHz	DC –3.5 GHz	–57 dBc	DC – 8 GHz	–40 dBc	
3.5 – 4.5 GHz	3.5 – 4.5 GHz	–42 dBc	DC – 8 GHz	–42 dBc	
4.5 – 6.4 GHz	4.5 – 6.4 GHz	–52 dBc	DC – 8 GHz	–42 dBc	

1 Measured with a balun, excluding harmonics.

Table 9: Phase noise with jitter reduction, AWG70001B operating at 50 GS/s

	Analog output frequency				
Offset	100 MHz	1 GHz	10 GHz	16 GHz	
100 Hz	–116 dBc/Hz	–94 dBc/Hz	–75 dBc/Hz	–70 dBc/Hz	
1 kHz	–134 dBc/Hz	–116 dBc/Hz	–95 dBc/Hz	–91 dBc/Hz	
10 kHz	–136 dBc/Hz	–119 dBc/Hz	–101 dBc/Hz	–96 dBc/Hz	
100 kHz	–138 dBc/Hz	–118 dBc/Hz	–99 dBc/Hz	–96 dBc/Hz	

Analog output frequency					
Offset	100 MHz	1 GHz	10 GHz	16 GHz	
1 MHz	–150 dBc/Hz	–132 dBc/Hz	–112 dBc/Hz	–108 dBc/Hz	
10 MHz	–156 dBc/Hz	–157 dBc/Hz	–138 dBc/Hz	–130 dBc/Hz	

Table 9: Phase noise with jitter reduction, AWG70001B operating at 50 GS/s (cont.)

Table 10: Phase noise with jitter reduction, AWG70001B and AWG70002B operating at 25 GS/s

		Analog output frequ	Jency	
Offset	100 MHz	1 GHz	10 GHz	
100 Hz	–115 dBc/Hz	–95 dBc/Hz	–76 dBc/Hz	
1 kHz	–134 dBc/Hz	–115 dBc/Hz	–86 dBc/Hz	
10 kHz	-138 dBc/Hz	–121 dBc/Hz	–102 dBc/Hz	
100 kHz	–138 dBc/Hz	–118 dBc/Hz	–100 dBc/Hz	
1 MHz	–150 dBc/Hz	–132 dBc/Hz	–113 dBc/Hz	
10 MHz	–155 dBc/Hz	–157 dBc/Hz	-138 dBc/Hz	

Table 11: Phase noise with jitter reduction, AWG70002B operating at 8 GS/s

	Analog output frequency				
Offset	100 MHz	1 GHz	2 GHz	3 GHz	
100 Hz	–110 dBc/Hz	–89 dBc/Hz	–83 dBc/Hz	–80 dBc/Hz	
1 kHz	–127 dBc / Hz	–109 dBc / Hz	–102 dBc / Hz	–99 dBc / Hz	
10 kHz	–134 dBc/Hz	–115 dBc/Hz	–108 dBc/Hz	–107 dBc/Hz	
100 kHz	–134 dBc/Hz	–113 dBc/Hz	–106 dBc/Hz	–104 dBc/Hz	
1 MHz	–142 dBc/Hz	–121 dBc/Hz	–114 dBc/Hz	–112 dBc/Hz	
10 MHz	–154 dBc/Hz	–149 dBc/Hz	–144 dBc/Hz	–141 dBc/Hz	

Table 12: Phase noise with jitter reduction, AWG70002B operating at 16 GS/s

	Analog output frequency						
Offset	100 MHz	1 GHz	2 GHz	3 GHz	4 GHz		
100 Hz	–112 dBc/Hz	–90 dBc/Hz	–87 dBc/Hz	–82 dBc/Hz	–80 dBc/Hz		
1 kHz	–128 dBc / Hz	–109 dBc / Hz	–103 dBc / Hz	–99 dBc / Hz	–97 dBc / Hz		
10 kHz	–134 dBc/Hz	–116 dBc/Hz	–110 dBc/Hz	–106 dBc/Hz	–104 dBc/Hz		
100 kHz	–133 dBc/Hz	–113 dBc/Hz	–108 dBc/Hz	–104 dBc/Hz	–101 dBc/Hz		
1 MHz	–141 dBc/Hz	–122 dBc/Hz	–116 dBc/Hz	–113 dBc/Hz	–110 dBc/Hz		
10 MHz	–154 dBc/Hz	–150 dBc/Hz	–147 dBc/Hz	–143 dBc/Hz	–140 dBc/Hz		

Specifications

	Analog output frequency				
Offset	100 MHz	1 GHz	10 GHz	16 GHz	
100 Hz	–110 dBc/Hz	–89 dBc/Hz	–69 dBc/Hz	–67 dBc/Hz	
1 kHz	–125 dBc/Hz	–105 dBc/Hz	–84 dBc/Hz	–82 dBc/Hz	
10 kHz	–130 dBc/Hz	–110 dBc/Hz	–94 dBc/Hz	–89 dBc/Hz	
100 kHz	–126 dBc/Hz	–106 dBc/Hz	–89 dBc/Hz	–85 dBc/Hz	
1 MHz	–139 dBc/Hz	–119 dBc/Hz	–104 dBc/Hz	–100 dBc/Hz	
10 MHz	–145 dBc/Hz	–128 dBc/Hz	–111 dBc/Hz	–106 dBc/Hz	

Table 13: Phase noise without jitter reduction, AWG70001B operating at 49.998998 GS/s

Table 14: Phase noise without jitter reduction, AWG70001B and AWG70002B operating at 24.998998 GS/s

	Analog output frequency				
Offset	100 MHz	1 GHz	10 GHz		
100 Hz	–104 dBc/Hz	–92 dBc/Hz	–74 dBc/Hz		
1 kHz	–124 dBc/Hz	–105 dBc/Hz	–83 dBc/Hz		
10 kHz	–130 dBc/Hz	–111 dBc/Hz	–93 dBc/Hz		
100 kHz	–126 dBc/Hz	–106 dBc/Hz	–89 dBc/Hz		
1 MHz	–131 dBc/Hz	–122 dBc/Hz	–104 dBc/Hz		
10 MHz	–142 dBc/Hz	-129 dBc/Hz	–109 dBc/Hz		

Table 15: Phase noise without jitter reduction, AWG70002B operating at 7.998997998 GS/s

Offset	Analog output frequency				
	100 MHz	1 GHz	2 GHz	3 GHz	
100 Hz	–107 dBc/Hz	–88 dBc/Hz	-83 dBc/Hz	–79 dBc/Hz	
1 kHz	–120 dBc/Hz	–99 dBc/Hz	–92 dBc/Hz	–90 dBc/Hz	
10 kHz	–126 dBc/Hz	–107 dBc/Hz	–100 dBc/Hz	–98 dBc/Hz	
100 kHz	–125 dBc/Hz	–105 dBc/Hz	–98 dBc/Hz	–96 dBc/Hz	
1 MHz	–131 dBc/Hz	–110 dBc/Hz	–103 dBc/Hz	–102 dBc/Hz	
10 MHz	–141 dBc/Hz	–121 dBc/Hz	–113 dBc/Hz	–112 dBc/Hz	

Table 16: Phase noise without jitter reduction, AWG70002B operating at 15.998997998 GS/s

Analog output frequency					
Offset	100 MHz	1 GHz	2 GHz	3 GHz	4 GHz
100 Hz	–106 dBc/Hz	–88 dBc/Hz	–84 dBc/Hz	–79 dBc/Hz	–75 dBc/Hz
1 kHz	–120 dBc/Hz	–101 dBc/Hz	–94 dBc/Hz	–90 dBc/Hz	–87 dBc/Hz
10 kHz	–126 dBc/Hz	–107 dBc/Hz	–102 dBc/Hz	–98 dBc/Hz	–96 dBc/Hz
100 kHz	–125 dBc/Hz	–106 dBc/Hz	–100 dBc/Hz	–96 dBc/Hz	–94 dBc/Hz
1 MHz	–135 dBc/Hz	–115 dBc/Hz	–109 dBc/Hz	–106 dBc/Hz	–103 dBc/Hz
10 MHz	–141 dBc/Hz	–121 dBc/Hz	–115 dBc/Hz	–112 dBc/Hz	–109 dBc/Hz

Characteristics	Description
Connector type	Aeroflex/Weinschel Planar Crown Universal Connector System with SMA female adapter
Number of outputs	1
Type of output	Single-ended output
Output impedance	50 Ω
Frequency range	
No filter	10 MHz to 18 GHz
Low Pass	10 MHz to 11.5 GHz
Band Pass	10 GHz to 14.5 GHz
	13 GHz to 18 GHz
Amplitude Range	For a CW signal at specified frequencies in each path.
	Each path is calibrated at a single frequency (see Amplitude Accuracy). For signals at different frequencies, the range is shifted and the actual output power will be offset from the requested power. The specifications for the no filter path at 13 GHz and the band pass path at 18 GHz reflect the capability at those frequencies, not the accuracy.
No filter	25 dBm to –70 dBm at 1 GHz
	18 dBm to –77 dBm at 13 GHz
Low Pass	25 dBm to –70 dBm at 1 GHz
Band Pass	
10 GHz to 14.5 GHz	18 dBm to –77 dBm at 11 GHz
13 GHz to 18 GHz	20 dBm to –90 dBm at 14 GHz
	18 dBm to –90 dBm at 18 GHz
Amplitude resolution	0.01 dB
Amplitude accuracy	The AWG does not include a leveling loop. Signal amplitude accuracy is only specified for a CW signal at the calibration frequency. Signals at different frequencies can have a different amplitude. Modulated or multi-tone signals often have significantly lower amplitude.
	Calibration is done with a small signal to keep the amplifier in a linear range. When playing out full amplitude signals at high levels the amplifiers can be driven into compression and the output amplitude will not match the requested level and the signal can be distorted.
No filter	
16 °C to 26 °C	± 0.5 dB at 1 GHz
0 °C to 50 °C	± 1.5 dB at 1 GHz
Low Pass	
16 °C to 26 °C	± 0.5 dB at 1 GHz
0 °C to 50 °C	± 1.5 dB at 1 GHz
Band Pass (10 GHz to 14.5 GHz)	
16 °C to 26 °C	± 1.5 dB at 11 GHz
0 °C to 50 °C	± 3.0 dB at 11 GHz

Table 17: AC analog output (AWG70001B, Option AC)

Characteristics	Description		
Band Pass (13 GHz to 18 GHz)			
16 °C to 26 °C	± 1.5 dB at 14 GHz		
0 °C to 50 °C	± 3.5 dB at 14 GHz		
Amplitude flatness	Specifications include the sin(x)/x	roll off of the DAC at 50 GS/s.	
No filter			
10 MHz to 10 GHz	± 3 dB		
10 MHz to 13 GHz	± 4 dB		
Low Pass			
10 MHz to 10 GHz	± 3 dB		
Band Pass			
10 GHz to 14.5 GHz	± 3.5 dB		
13 GHz to 18 GHz	± 4.5 dB		
Harmonic distortion	Measured with a balun.		
Operating at 50 GS/s	Output Frequency	2nd harmonic	
No filter	<1 GHz	< –34 dBc	
	1 GHz to 4 GHz	< -30 dBc	
	>4 GHz	< -28 dBc	
	Output Frequency	3rd harmonic	
	<1 GHz	< -50 dBc	
	1 GHz to 4 GHz	<45 dBc	
	>4 GHz	< –33 dBc	
Amplifier 1 dB compression	AWG70001B operating at 50 GS/s	3	
	Output Frequency	Value	
No filter	1 GHz	> 25 dBm	
	13 GHz	> 22 dBm	
Low Pass	1 GHz	> 25 dBm	
Band Pass (10 to 14.5 GHz)	11 GHz	> 22 dBm	
Band Pass (13 to 18 GHz)	14 GHz	> 22 dBm	
	18 GHz	> 20 dBm	
Switching time	The time required for the attenuate after an amplitude change.	ors and amplifiers to settle to the specified output amplitude	
	20 ms		

Table 17: AC analog output (AWG70001B, Option AC) (cont.)

Table 18: Marker output

Characteristics	Description		
Connector type	SMA on front panel		
Number of outputs	AWG70001B: 2		
	AWG70002B: 4		
Type of output	(+) and (-) complementary output		
ON/OFF Control	Independent control for each marker		
Output impedance	50 Ω		
Output voltage	Independent control for each marker. Output voltage into RLOAD [Ω] to GND is approximately (2 * RLOAD / (50 + RLOAD)) times of voltage setting.		
Amplitude range	0.5 V_{p-p} to 1.4 V_{p-p} into 50 Ω		
Amplitude resolution	10 mV		
Offset range	1.4 V – (amplitude \div 2) to –1.4 V + (amplitude \div 2) into 50 Ω		
Offset resolution	10 mV		
DC accuracy (warranted)	\pm (10% of output high or low setting + 50 mV) into 50 Ω		
External termination voltage range	–2.8 V to +2.8 V		
Rise/fall time	< 35 ps (20% to 80% of swing) when High = 1.0 V, Low = 0 V		
Output current	± 28 mA maximum, assuming 1.4 V into 50 Ω load		
Delay from analog			
AWG70001B	180 ps ±25 ps		
AWG70001B Option AC	-380 ps ±25 ps		
AWG70002B	755 ps ±25 ps		
Variable delay control	Independent control for each marker		
Range	0 to 100 ps		
Resolution	1 ps		
Accuracy	±15 ps		
Skew between (+) and (-) outputs	< 12 ps		
Skew between M1 and M2	< 15 ps		
Random jitter on clock pattern	0.4 ps _{rms}		
	Using 0101 clock pattern with Hi = 250 mV, Low = -250 mV		
Total jitter on random pattern	20 ps _{p-p}		
	Using PRBS15 pattern, with Hi = 250 mV, Low = –250 mV		
	Measured at Bit Error Rate of 1e ⁻¹²		
Aberrations	< $33\%_{p\cdot p}$ for the first 100 ps following the step transition with 100% reference at 1 ns.		
Minimum pulse width	80 ps		
	A marker output can change logic states on any sample point. However it must remain in a given logic state long enough to satisfy the minimum pulse width specification.		

Table 19: Clock output

Characteristics	Description		
	The external clock output is a copy of an internal clock generator that is used to create the DAC sample clock. This clock always operates in the octave range specified below. It is multiplied and divided to create the effective DAC sampling rate.		
Connector type	SMA on rear panel		
Output impedance	50 Ω AC coupled		
Output amplitude	+5 dBm to +10 dBm		
Frequency range	6.25 GHz to 12.5 GHz		
Frequency resolution			
Internal and fixed reference	With jitter reduction: 50 MHz		
clock operation	Without jitter reduction: 100 MHz ÷ 2 ²⁰		
External variable reference	With jitter reduction: Fref ÷ R		
clock operation	Without jitter reduction: Fref ÷ R ÷ 2 ²⁰		
	Fref = reference clock frequency		
	R = 4 when 140 MHz < Fref ≤ 250 MHz		
	R = 2 when 70 MHz < Fref \leq 140 MHz		
	R = 1 when 35 MHz \leq Fref \leq 70 MHz		

Table 20: Clock input

Characteristics	Description		
	The external clock input can be used to create the DAC sample clock. This clock must always operate in the octave range specified below. It is multiplied and divided to create the actual DAC sample clock.		
Connector type	SMA on rear panel		
Input impedance	50 Ω (AC coupled)		
Input amplitude	0 dBm to +10 dBm		
Frequency range	6.25 GHz to 12.5 GHz		
	Acceptable frequency drift while the instrument is operating is $\pm 0.1\%$.		

Table 21: Trigger input

Characteristics	Description
Number of inputs	2
Connector	SMA on rear panel
Input impedance	1 k Ω or 50 Ω , selectable
Polarity	Positive or negative, selectable
Input voltage range	
1 kΩ selected	–10 V to 10 V
50 Ω selected	< 5 V _{RMS}
Input voltage minimum amplitude	0.5 V _{p-p} minimum

Characteristics	Description
Threshold control	
Range	–5.0 V to 5.0 V
Resolution	0.1 V
Accuracy	\pm (5% of the setting + 0.1 V)
Minimum pulse width	
1 kΩ selected	20 ns
50 Ω selected	20 ns
Trigger delay to analog output	Asynchronous trigger mode: 42,000 / (2 * fclk) +20 ns, ± 20 ns (1.7 μs @ fclk = 12.5 GHz, 25 GS/s)
	Synchronous trigger mode: 40,800 / (2 * fclk) + 20 ns, ±20 ns (1.652 μs @ fclk = 12.5 GHz, 25 GS/s)
	fclk is the frequency of the DAC sampling clock
	The DAC sampling clock frequency is displayed on the clock settings tab when the external clock output is enabled.
Trigger hold off	8320/fclk ±20 ns
	fclk is the frequency of the DAC sampling clock.
	Trigger hold off is the amount of delay required at the end of a waveform before another trigger pulse can be processed.
Trigger asynchronous jitter	The asynchronous jitter performance is directly proportional the frequency of the DAC sampling clock. The DAC sampling clock frequency is displayed on the clock settings tab when the external clock output is enabled.
1 kΩ selected	130 ps _{p-p} , 26 ps _{rms} for 6.25 GHz DAC sampling clock
	90 ps _{p-p} , 17 ps _{ms} for 12.5 GHz DAC sampling clock
50 Ω selected	105 ps _{p-p} , 24 ps _{rms} s for 6.25 GHz DAC sampling clock
	70 ps _{p-p} , 14 ps _{rms} for 12.5 GHz DAC sampling clock
Trigger synchronous jitter	Sample rate = 25 GS/s
	Trigger input impedance = 50 Ω
Clock In = 12.5 GHz	300 fs _{rms} , 4.2 ps RJ _{p-p} BER@10-12
Variable Reference In = 156.25 MHz	400 fs _{ms} s, 5.6 ps RJ _{p-p} BER@10-12
Fixed Reference In = 10 MHz	1.7 ps rms, 23.8 ps RJ _{pp} BER@10-12

Table 21: Trigger input (cont.)

Table 22: Reference clock input

Characteristics	Description	
Connector type	SMA on rear panel	
Input impedance	50 Ω (AC coupled)	
Input amplitude	–5 dBm to +5 dBm	

Table 22:	Reference	clock	input	(cont.)
-----------	-----------	-------	-------	---------

Characteristics	Description
Fixed frequency range	10 MHz ±100 ppm
Variable frequency range	35 MHz to 250 MHz
	Acceptable frequency drift while the instrument is operating is $\pm 0.1\%$. $\pm 2\%$ tolerance from the specified frequency before forcing an unlock condition.

Table 23: Sync clock output

Characteristics	Description
Connector type	SMA on rear panel
Output impedance	50 Ω (AC coupled)
Output amplitude	$1.0 \pm 0.15 V_{pp}$ into 50 Ω
Frequency	Clock output ÷ 80

Table 24: Sequencer

Characteristics	Description
Maximum number of steps	16,384
Waveform repeat	Selectable:
	Infinity
	Variable from 1 to 1,048,576

Characteristics	Description		
Connector type	15-pin D-sub female connector on rear pan	el.	
Input signal pin assignment	8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	Pin assignments		
	1	GND	
	2	Data bit 0, input	
	3	Data bit 1, input	
	4	Data bit 2, input	
	5	Data bit 3, input	
	6	GND	
	7	Strobe, input	
	8	GND	
	9	GND	
	10	Data bit 4, input	
	11	Data bit 5, input	
	12	Data bit 6, input	
	13	Data bit 7, input	
	14	GND	
	15	GND	
Input levels	3.3 V LVCMOS		
	5 V TTL compliant		
Input impedance	1 k Ω resistor pull down to GND		
Number of jump destinations	256		
Strobe			
Polarity	Negative edge		
	Data is clocked in on negative edge.		
Minimum pulse width	64 ns		
Setup and hold	Setup: 5 ns		
	Hold: 5 ns		

Table 25: Pattern Jump Input

Characteristics	Description
Latency to analog output	The DAC sampling clock frequency is displayed on the clock settings tab when the external clock output is enabled.
From trigger event	42,000 / (2 * fclk) +20 ns, ± 20 ns (1.7 μs @ fclk = 12.5 GHz, 25 GS/s)
From table jump strobe	42,000 / (2 * fclk) +20 ns ± 20 ns (1.7 μs @ fclk = 12.5 GHz, 25 GS/s
Holdoff time	>18 µs
	Strobe hold off is the amount of delay required at the end of a waveform before another strobe pulse can be processed.

Table 25: Pattern Jump Input (cont.)

Table 26: Streaming ID connector

Characteristics	Description
Connector type	RJ45 on rear panel
Latency to analog output	42,000 / (2 * fclk) +20 ns, ± 20 ns (1.7 μs @ fclk = 12.5 GHz, 25 GS/s)

Table 27: Aux out connectors

Characteristics	Description
Connector type	SMB on rear panel
Number of Outputs	AWG70001B: 4
	AWG70002B: 8
Output Impedance	50 Ω
Output Amplitude	High: 3.3 V into 50 Ω to GND
	Low: 0 V
Configured as a sequencer flag output	
Maximum Toggle Frequency	<11 MHz
	It will track the sequencer step rate.
Analog to flag delay	If Waveform Length/240 = integer, then \leq 200 ps
Repeatability	If Waveform Length/240 = Noninteger, then ≤ 120/sampling clock
Analog to Flag Output delay	-291.5/(sample_clock_rate *2) + 9.76 ns ± 5 ns
Configured as a timer output	
Period	1 Hz (1 s) to 100 kHz (10 μs)

Table 28: 10 MHz reference clock output

Characteristics	Description
Connector type	SMA on rear panel
Output impedance	50 Ω (AC coupled)
Amplitude	+4 dBm ±2 dBm
 Frequency (warranted) 	10 MHz ±(1 ppm + aging)
	Sine wave output
Aging	Within ±1 ppm/year

Table 29: Sync port

Characteristics	Description
	Proprietary interface for connecting to the AWGSYNC01 synchronization hub. Enables synchronized clocking and triggering of multiple AWG instruments.
Number of ports	1
Connector type	62-pin Samtec El8-031-S-D-RA on rear panel.

Table 30: CPU module and peripheral devices

Characteristics	Description
CPU	Intel core I7-4700EQ, 4 core, 2.4 GHz, 6M cache
Memory	16 GB (2 x 8 GB), DDR3-1600 or faster SODIMM
Hard disk drive	Solid state, ≥1 TB, removable
USB 2.0 (front panel)	2 ports, type A connector.
	The front USB ports can be enabled/disabled as a group.
USB 3.0 (rear panel)	4 ports, type A connector.
	The rear USB ports can be enabled/disabled as a group.
LAN	RJ-45 LAN connector supporting 10 base-T, 100 base-T, and Gigabit Ethernet on rear panel
ESATA	1 port on rear panel, 1.5 Gbps. Instrument must be powered down to make connection.
Video output	1 VGA port on rear panel
GPIB	Available as an optional accessory that connects to the USB Device and USB Host ports with the TEK-USB-488 GPIB to USB Adapter
	The control interface is incorporated into the instrument user interface.

Table 31: Display

Characteristics	Description	
Display area	132 mm X 99 mm (5.2 in X 3.9 in, 6.5 in diagonal)	
Resolution	1024 X 768 pixels	
Touch screen	Built-in touch screen	

Characteristics	Description
Source voltage and frequency	
Rating voltage	100 V_{AC} to 240 V_{AC}
Frequency range	50 Hz to 60 Hz
Power consumption	<500 W
WARNING. To reduce the operating voltage	uce the risk of fire and shock, ensure that the mains supply voltage fluctuations do not exceed 10% of a range.

Table 32: Power supply

Mechanical characteristics

Table 33: Mechanical characteristics

Characteristics	Description
Net weight	
AWG70001B and AWG70002B	
Without package	37.0 lb (16.8 kg)
With package	49.4 lb (22.4 kg)
AWG70001B with option AC	
Without package	38.56 lb (17.49 kg)
With package	50.96 lb (23.12 kg)
Dimensions, overall	
Height	153.6 mm (6.05 in)
Width	460.5 mm (18.13 in)
Length	603.5 mm (23.76 in)
Cooling method	Forced-air circulation with no air filter
Cooling clearance	
Тор	0 in
Bottom	0 in
Left side	50 mm (2 in)
Right side	50 mm (2 in)
Rear	0 in

Figure 1: Dimensions and minimum cooling clearances

Environmental characteristics

Table 34: Environmental characteristics

Characteristics	Description
Temperature	
Operating	0 °C to +50 °C (+32 °F to 122 °F)
Nonoperating	–40 °C to +60 °C (–40 °F to 140 °F) with 30 °C/hour (86 °F/hour) maximum gradient, with no media installed in disc drives
Relative humidity	
Operating	5% to 90% relative humidity at up to +30 °C (+86 °F)
	5% to 45% relative humidity above +30 °C (+86 °F) up to +50 °C (122 °F) noncondensing
Nonoperating	5% to 90% relative humidity at up to 30 °C
	5% to 45% relative humidity above +30 °C (+86 °F) up to +60 °C (140 °F) noncondensing
Altitude	
Operating	Up to 3,000 m (approximately 10,000 feet)
	Maximum operating temperature decreases 1 °C (34 °F) each 300 m (984 ft) above 1.5 km (4921 ft)
Nonoperating	Up to 12,000 m (approximately 40,000 feet)
AWGSYNC01

Electrical specifications

Table 35: Electrical specifications

Characteristic	Description
System	
Number of AWG70001B or AWG70002B instruments supported	4 All instruments must be the same model.
Output to Output Skew (typical)	±10 ps
Repeatability (typical)	≤5 ps
Random Jitter on Clock Pattern (typical)	0.315 ps rms
Total Jitter on Random Pattern (typical)	13 ps _{p.p}
Calibration	
Connector	SMA at the Front Panel
Number of inputs	4
Input Impedance	50 Ω
Clock	
Clock Output	The external clock output is a copy of an external input clock into the sync hub. This output is used to drive the external clock input of the AWG.
Number of Outputs	4
Connector	SMA on rear-panel
Output Impedance	50 Ω AC coupled
Output Amplitude (typical)	+5 dBm to +10 dBm
Frequency Range	6.25 GHz to 12.5 GHz
Clock Input	The external clock input is used to create the DAC sample clock. This clock must always operate in the octave range specified below.
Connector	SMA on rear-panel
Input Impedance	50 Ω AC coupled

Characteristic		Description		
	Input Amplitude (typical)	+5 dBm to +10 dBm		
	Frequency Range (typical)	6.25 GHz to 12.5 GHz		
Syr	nc Clock Output			
	Connector	SMA on rear-panel		
	Output Impedance	50 Ω AC coupled		
	Output Amplitude (typical)	1.0 ±0.15 V _{p-p} into 50 Ω		
	Frequency	Clock Output ÷ 80		
Trię	gger Input			
	Number of Inputs	2		
	Slope / Polarity	Positive or negative selectable		
	Connector	SMA on rear-panel		
	Input Impedance	1 kΩ or 50 Ω selectable		
	Input Voltage Range	When 1 k is selected: -10 V to +10 V		
		When 50 Ω is selected: <5 V_{RMS}		
Input Minimum Amplitude 0.5 V _{p-p} (typical)		0.5 V _{p-p}		
	Threshold Range	–5.0 V to +5.0 V		
Threshold Resolution 0.1		0.1 V		
Threshold Accuracy (typical) ±5% of		±5% of setting + 0.1 V		
	Trigger Minimum Pulse Width	When 1 k Ω is selected: 20 ns		
	(typical)	When 50 Ω is selected: 20 ns		
	Trigger Delay to Analog Output (typical)	Synchronous trigger mode: 30,800 / (2 * sampling clock) + 20 ns ±20 ns		
	Trigger Asynchronous Jitter (typical)	80 / sampling clock frequency		
	Trigger Synchronous Jitter	Clock In = 12.5 GHz:		
	(typical)	300 fs rms, 4.2 ps RJ _{p-p} BER@10-12		
		Variable Reference In = 156.25 MHz:		
		400 fs rms, 5.6 ps RJ _{p-p} BER@10-12		
		Fixed Reference In = 10 MHz:		
		1.7 ps rms, 23.8 ps RJ _{p-p} BER@10-12		
		Sample rate = 25 GS/s		
		Trigger input impedance = 50		

Table 35: Electrical specifications (cont.)

Characteristic	Description
Pattern Jump Input	
Connector	15-pin DSUB on rear-panel
Pin Assignments	Pin, Signal
	1 GND
	2 Jump Bit 0 Input
	3 Jump Bit 1 Input
	4 Jump Bit 2 Input
	5 Jump Bit 3 Input
	6 GND
	7 Strobe Input
	8 GND
	9 GND
	10 Jump Bit 4 Input
	11 Jump Bit 5 Input
	12 Jump Bit 6 Input
	13 Jump Bit 7 Input
	14 GND
	15 GND
Input Impedance	1 kΩ pull-up to 5 V
Input Levels	3.3 V LVCMOS, 5 V TTL compliant
Number of Destinations	256
Strobe Polarity	Negative
Strobe Minimum Pulse Width (typical)	64 ns
Strobe Setup and Hold (typical)	Setup: 5 ns
	Hold: 5 ns
Latency to Analog Output (typical)	102,125 / sampling clock +20 ns ± 20 ns
Holdoff Time	>18 µs
Sync Port	
Number of ports	4
Function	Proprietary interface for connecting to the AWG SYNC hub. Enables synchronized clocking and triggering of multiple AWG instruments.
Connector	62-pin Samtec El8-031-S-D-RA on the rear panel

Table 35: Electrical specifications (cont.)

Table 36: Power supply

Cha	aracteristic	Description
Pov	ver	
	Power Supply AC Line Input	100 – 240 VAC, 50 / 60 Hz
	Power Consumption	< 500 W
Saf	ety	
U.S. nationally recognized UL 61010-1. testing laboratory listing Laboratory U		UL 61010-1. Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements.
Canadian Certification CAN/CSA-C22.2 No. 61010-1. Safety Requiren Control, and Laboratory Use – Part 1: General		CAN/CSA-C22.2 No. 61010-1. Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements.
EU declaration of conformity – low voltage Compliance was demonstrated to the followin the European Union: Low Voltage Directive 2014/35/EU. EN 61010-1. Safety Requirements for El Laboratory Use – Part 1: General Require		Compliance was demonstrated to the following specification as listed in the Official Journal of the European Union:
		Low Voltage Directive 2014/35/EU.
		EN 61010-1. Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements.
	Additional compliances	IEC 61010-1. Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements.

Mechanical characteristics

Table 37: Mechanical characteristics

Characteristic	Description
Dimensions	
Main body	Height: 1.75"
	Width: 16.80"
	Depth: 20.79"
Overall with feet & handles	Height: 1.75"
	Width: 18.13"
	Depth: 23.76"
Net Weight	Instrument: 11.2 lbs
	Instrument with packaging: 20.0 lbs
Cooling Clearance	Тор: 0"
	Bottom: 0"
	Sides: 0"
	Rear: 2"

Performance verification procedures

Two types of performance verification procedures can be performed on the instrument: *Brief Procedures* and *Performance Tests*. You may not need to perform all of these procedures, depending on what you want to accomplish.

To rapidly confirm that the instrument functions and was adjusted properly, perform *Diagnostics* and *Calibration*.

Advantages: These procedures are quick to do and require no external equipment or signal sources. These procedures perform extensive functional and accuracy testing to provide high confidence that the instrument will perform properly.

• To further check functionality, first perform Diagnostics and Calibration, and then perform *Functional Test*.

Advantages: The procedure requires minimal additional time to perform, and requires minimal equipment. The procedure can be used when the instrument is first received.

If more extensive confirmation of performance is desired, complete the self tests and functional test, and then do the *Performance Tests*.

Advantages: These procedures add direct checking of warranted specifications. These procedures require specific test equipment. (See page 49, *Required equipment*.)

Refer to the help system or the user information supplied with the instrument as needed for operation information.

The procedures use "AWG" when referring to the AWG70000B series instruments.

Input and output options

The AWG has two USB ports on the front panel, and four USB ports on the rear panel. These ports can be used for an external mouse and/or keyboard. Additionally, an external video display can be connected to the VGA display port on the rear panel.

Instrument interface overview

The AWG interface is briefly described on the following pages to help you perform the tests and to navigate to the files needed to complete the procedures.

		1	2 3	4	
10-			Stopped		
	Home Setup Wavefor	m Plug-ins Sequence Editor	Capture/Playback Utilities	Precompensation	
	Channel 1 sinewa	Force Trig A ave-markers	Force Trig B All Outputs O	ff AWG Functions Amplitude 400.8 mVpp	- 5
9	200 mV -200 mV M1 M2 0 s 400 ps		1 1 1 12 12 12 12 12 12 12 12		
	① Channel 2 Sinew	ave	 • 🗞 关	Amplitude 500.0 mVpp	6
	Run Triggered	▼ Trigger A ▼			
8-(Sa	ample Rate: 25 GS/s		
	7				

Screen element		Description	
1. Work space tabs		The work space tabs provides access to all of the instrument functions.	
		Home returns the work space area to the channel plot display.	
		 Setup displays the setup controls for channels, clock, triggers, and auxiliary outputs. 	
		Waveform Plug-ins displays the user interface for the selected plug-in.	
		Sequence Editor displays the workspace area to create waveform sequences (license required).	
		 Capture/Playback displays the workspace area to import baseband I/Q data files and compile them into a waveform for play out. 	
		Utilities displays controls for system information (including diagnostics and calibration), preferences, help and support. Utilities are global instrument settings that are maintained in non-volatile memory when the application is closed or the instrument powered off. These settings are not saved and recalled with setup files nor are they impacted by restoring the default setup.	
		Precompensation displays the workspace area to create correction files to be used with a waveform file (license required).	
2.	Play/Stop button	Starts and stops waveform play out.	
		The Play button icon changes to indicate the waveform play out status.	
3.	All outputs off	The All Outputs Off button provides a quick disconnect of the analog outputs and marker outputs, whether those outputs are enabled or not. (All Outputs Off overrides the output enable controls.) The outputs are electrically disconnected. When the All Outputs Off is disabled, the channel and marker outputs return to their defined state.	
4.	Mode selection	Switches the instrument mode between AWG (arbitrary waveform generator) and Functions (function generator).	
5.	Waveforms and sequences	Contains all waveforms and sequences available for play out. Touch and hold (or right-mouse click) a waveform or sequence name to display menu selections to manage the lists. Sequencing must be licensed.	
6.	Work space	The work space area view changes depending on the selected work space tab.	
7.	Trigger controls	The Trigger controls provide access to the trigger settings.	
		Use Run mode to set the trigger type.	
		Use Trigger source for external triggering.	
		Use the couple icon to couple the trigger settings for all channels.	
8.	Status bar	The status bar displays various user messages and status indicators.	
9.	Channel enable	Enables the channel output. Internally connects the channel and marker output connectors to the instrument. The All Outputs Off feature overrides the channel enable control.	

Screen element	Description	
10. Toolbar	Tools are used to:	
	Open files (setup files, waveform files, sequence files).	
	Save the current setup.	
	Reset to the default setup.	
	Restore the most recently used setup.	
	Restore the display to the default layout.	
	Toggle the font size.	
	Display the instrument help.	
11. Waveform display	Toggles the channel's waveform plot display on or off.	
12. Channel settings display	Shows or hides additional channel controls	

Typical output control screen

The following screen shot shows the Channel 1 Analog output controls when setting up a typical output waveform.

Setup							
General Channe	el Clock	Trigger	Skew	Aux Out	Timer	Sync]
Channel 1 🔻	Chan	nel On	-		Couple	Settings	None 🔻
Output Settings	Output Optic	ons					
Output Path	Direct	•					
Amplitude	≘ 500.0 mVp	PP		Ma	rkers M	L О М2 (
Perolutio							
(bits)	8+2 Mkrs	•					

Brief procedures

There are three procedures in this section that provide a quick way to confirm basic functionality and proper adjustment:

- Diagnostics
- Calibration
- Functional Test

Diagnostics

The following steps run the internal routines that confirm basic functionality and proper adjustment.

Equipment	Prerequisites
None	None

- 1. Disconnect all the cables from the output channels.
- 2. Select the Utilities tab and then select Diag & Cal.
- 3. Click the Diagnostics & Calibration button.
- 4. From the Diagnostics and Calibration screen, select **Diagnostics**.
- 5. Change the diagnostics type to Full diagnostics.
- 6. In the Diagnostics dialog box, confirm that all the check boxes are selected. If they are not all selected, click the **Select All Tests** button.

7. Click the **Start** button to execute the diagnostics.

The internal diagnostics perform an exhaustive verification of proper AWG function. This verification may take several minutes. When the verification is completed, the resulting status will appear in the dialog box.

8. Verify that **Pass** appears as Status in the dialog box when the diagnostics complete.

Figure 2: Diagnostics dialog box

9. Click the Close button.

Calibration

Equipment	Prerequisites
None	Power on the AWG and allow a 20 minute
	warm-up before doing this procedure.

- 1. Disconnect all the cables from the output channels.
- 2. Select the Utilities tab and then select Diag & Cal.
- 3. Click the Diagnostics & Calibration button.
- 4. From the Diagnostics and Calibration screen, select Calibration.

Figure 3: Calibration dialog box

- 5. Click the Start button to start the routine.
- 6. Verify that **Pass** appears in the Summary column for all items when the calibration completes.
- 7. Click the Close button.

Functional test

The purpose of the procedure is to confirm that the AWG70000B series instruments function properly.

The procedures use "AWG" when referring to the AWG70000B series instruments.

The required equipment is listed below.

Item Qty. Minimum requirements		Recommended equipment	
Oscilloscope	1 ea.	Bandwidth: 4 GHz or higher 4 channels	Tektronix DPO70404C
Function generator	1 ea.	1 kHz, square wave, 5 V _{p-p} output	Tektronix AFG3021C
Signal analyzer	1 ea.	Bandwidth: 14 GHz or higher	Tektronix RSA5126B
(required for Option AC only)			
Adapter	3 ea	TekConnect oscilloscope input to SMA input	Tektronix TCA-SMA
50 Ω SMA cable	3 ea.	DC to 20 GHz	Tensolite 1-3636-465-5236
50 Ω SMA termination	3 ea.	DC to 18 GHz	Tektronix part number 015-1022-01 (one is supplied with the AWG70001B, two with the AWG70002B).
50 Ω BNC cable	1 ea.	Male connectors both ends	Tektronix part number 012-0057-01
SMA-BNC adapter	3 ea.	SMA female to BNC male connector	Tektronix part number 015-0572-00
Planar Crown RF Input Connector – 7005A-1 SMA	1 ea.	Planar Crown RF Input Connector – Type N to SMA Female	Tektronix part number 131-8689-00
Female		For use with Tektronix RSA5126B signal	
(required for Option AC only)		analyzer	

Table 38: Required equipment for the functional test

Test waveforms The following table lists the test waveforms that are used for the functional test. These are included on the AWG hard drive at: C:\Program Files\Tektronix\AWG70000\Samples\PV.

Table 39: Test waveforms

Waveform name	Purpose
PV_Square.wfmx	For the triggered output functional test
	For the analog and marker functional test

Checking the analog and marker outputs

Required equipment	Prerequisites
Oscilloscope	None
Three TCA-SMA adapters	_
Three 50 Ω SMA cables	_
Three 50 Ω SMA terminations	_

- 1. Press the Home button, or click the Home tab on the display.
- 2. Click the Reset to Default Setup button in the toolbar.
- **3.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- 4. Use a 50 Ω SMA cable and a TCA-SMA adapter to connect the CH 1 + connector on the AWG to channel 1 of the oscilloscope.
- 5. Use a 50 Ω SMA cable and a TCA-SMA adapter to connect the CH 1 Markers M1 + connector on the AWG to channel 2 of the oscilloscope.
- 6. Use a 50 Ω SMA cable and a TCA-SMA adapter to connect the CH 1 Markers M2 + connector on the AWG to channel 3 of the oscilloscope.
- 7. Use a 50 Ω SMA termination to terminate the CH 1 connector on the AWG.
- 8. Use a 50 Ω SMA termination to terminate the CH 1 Markers M1 connector on the AWG.
- 9. Use the 50 Ω SMA termination to terminate the CH 1 Markers M2 connector on the AWG.

Figure 4: Equipment connections to check the analog and marker outputs

- **10.** Set the oscilloscope as follows:
 - **a.** Vertical scale: 200 mV/div (CH 1), 1 V/div (CH 2 and CH 3)
 - b. Horizontal scale: 20 ns/div
 - c. Input coupling: DC
 - **d.** Input impedance: 50 Ω
 - e. CH 1 position: +2 div (if necessary)
 - **f.** CH 2 position: -1 div (if necessary)
 - **g.** CH 3 position: –3 div (if necessary)
 - **h.** Trigger source: CH1
 - i. Trigger level: 0 mV
 - j. Trigger slope: Positive
 - k. Trigger mode: Auto
- 11. On the AWG, load the **PV_Square.wfmx** waveform as an output waveform. Follow these steps:
 - a. In the Waveform List window, click Open Waveform .
 - b. Navigate to C:\Program Files\Tektronix\AWG70000\Samples\PV\PV_Square.wfmx.
 - c. With waveform PV_Square.wfmx highlighted, select **Open** to load the waveform into the Waveform List.
 - **d.** In the Waveform List window, select (drag and drop) the **PV_Square.wfmx** waveform onto the work space.
- 12. Click on the Setup tab and select the Channel tab.
- 13. From the Resolution (bits) drop-down list, select 8+2 Mkrs.
- 14. Click the Channel On/Off button to toggle the channel output to On.

Home	Setup	Wa	eform Plug	g-ins Se
Genera	l Char	nnel	Clock	Trigger
Chan	nel 1 🗖		🍅 Chann	el On

NOTE. The All Outputs is Off, so the channel still indicates disabled.

15. Press the front panel **Play/Stop** button (or click play on the display) to *start* the play out.

- **16.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- **17.** Check that the Channel 1, Marker 1, and Marker 2 waveforms are properly displayed on the oscilloscope screen. (See Figure 5.)

Figure 5: Output waveform from the channel, marker 1, and marker 2 connectors

- **18.** Press the front panel **Play/Stop** button (or click play on the display) to *stop* the play out.
- **19.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- **20.** If you are testing an AWG70002B, repeat the test for the Channel 2, Marker 1, and Marker 2 outputs.
- **21.** Disconnect the test setup.

Checking the AC output (AWG70001B with option AC)

Required equipment	Prerequisites
Signal analyzer	None
One Planar Crown RF Input Connector – 7005A-1 SMA Female	
One 50 Ω SMA cable	
Two 50 Ω SMA terminations	

- 1. Click the Reset to Default Setup button in the toolbar.
- 2. Press the front panel All Outputs Off button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- 3. Use a 50 Ω SMA cable to connect the AC connector on the AWG to the RF input of the signal analyzer.

Figure 6: Equipment connections to check the AC output

- 4. Create three sinewave test waveforms (1 GHz, 11 GHz, and 14 GHz).
 - a. Click the Waveform Plug-ins tab on the display.
 - **b.** Set the Plug-in type to **Basic Waveform**.
 - c. Set the Function to Sine.
 - d. Set the Frequency to 1 GHz.
 - e. Click Compile Settings icon.
 - f. In the Name field, change the name to Waveform_1 GHz.
 - g. Click Compile.
 - h. Click Close to close the Compile Settings dialog screen.
 - i. Set the Frequency to 11 GHz.
 - j. Click Compile Settings icon.
 - k. In the Name field, change the name to Waveform 11 GHz.

- I. Click Compile.
- m. Click Close to close the Compile Settings dialog screen.
- n. Set the Frequency to 14 GHz.
- o. Click Compile Settings icon.
- p. In the Name field, change the name to Waveform_14 GHz.
- q. Click Compile.
- r. Click Close to close the Compile Settings dialog screen.
- 5. Set the spectrum analyzer as follows:
 - **a.** Press the Preset button to set the analyzer to its default settings
 - **b.** Display the Spectrum measurement
 - c. Set Center Frequency to 1 GHz
- 6. Click the Setup tab on the display.
 - a. Change the Output Path to AC.
 - b. Set Filter to None.
- 7. Press the **Home** button, or click the **Home** tab on the display.
- 8. Click the Channel On/Off button to toggle the channel output to On.

NOTE. The All Outputs is Off, so the channel still indicates disabled.

- **9.** In the Waveform List window, select (drag and drop) the **Waveform_1 GHz** waveform onto to the work space.
- **10.** Press the front panel **Play/Stop** button (or click play on the display) to *start* the play out.
- **11.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- **12.** Check that the Channel 1 waveform is properly displayed on the signal analyzer screen. (See Figure 7.)

Tek RSA5100B -	(Spectrum)								
File View	Run Replay Mar	kers Setup Prese	ets Tools Window	Help					_ & ×
🖻 🖪 🔊 (° 1	🗃 🕜 🎯 T 🍸 🕯	Frequency:	1.0000 GHz Refl	.ev: 0.00 dBm			Pres	et 🕘 Replay	- 🔵 Stop -
~	Trace 1 Show	+Peak Normal							Clear
⊕ dB/div:	0.0 -				MR.				
10.0 dB	MR: -0.50 dBr 1 GHz	n							
8800: 10.0 kHz									
VBW:	-20.0 -								
	-40.0 -								
	-60.0 -								
	-80.0 -				Å.				
	htelder and an	1. Mar. And a latter a			1 		a maria		ere harr
	Rear March Marcal	han adala dhuardadh da t	white the second way	"hadden ber allan all	W-1/WMM	htter var which have	fladf ^a yligiand	Munji Naza 4	NY WARKAN
	100.0 -								
Autoscale •	CF: 1.0000 GHz							e Sp	oan: 165.0 MHz
Spectrum	Freq & Span BW	Traces Scale Pre	efs						
Settings	Center 1.0	000 CU-	Carao 105.0 M	11-					
	Center: 1.0	000 012	Spail: 105.0 M	n2	Max Span				
	Start: 917	.5 MHz							
	Stop: 1.0	825 GHz							
Restore	Step Size: 10.	0000 MHz	Auto						
Defaults									
Markers Defin	ne 🗸 MR 🛛 Fre	equency 👻 🛛 🛨 GHz	To Ce	nter Peak 🗲		Table			X
Analyzing	Aco BW: 165.00 MHz	Acq Length: 258 5	95 us Real Time F	ree Run Ref:	Int Atten: 15	dB			

Figure 7: 1 GHz output waveform - no filter

- **13.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- 14. Click the Setup tab on the display.
 - a. Set Filter to Low Pass.
- **15.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- **16.** Check that the Channel 1 waveform is properly displayed on the signal analyzer screen. (See Figure 8.)

Figure 8: 1 GHz output waveform – Filter set to Low Pass

- 17. Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- 18. Click the Setup tab on the display.
 - a. Set Filter to Band Pass.
 - **b.** Set **Range** to **10 14.5 GHz**.
- 19. Press the Home button, or click the Home tab on the display.
- **20.** In the Waveform List window, select (drag and drop) the **Waveform_11 GHz** waveform onto to the work space.
- **21.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- **22.** Check that the Channel 1 waveform is properly displayed on the signal analyzer screen. (See Figure 9.)

Figure 9: 11 GHz output waveform

- **23.** Press the front panel **Play/Stop** button (or click play on the display) to *stop* the play out.
- **24.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- 25. Click the Setup tab on the display.
 - a. Set Range to 13 18 GHz.
- **26.** Press the **Home** button, or click the **Home** tab on the display.
- 27. In the Waveforms list window, select (drag and drop) the Waveform_14 GHz waveform onto to the work space.
- **28.** Press the front panel **Play/Stop** button (or click play on the display) to *start* the play out.
- **29.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- **30.** Check that the Channel 1 waveform is properly displayed on the signal analyzer screen. (See Figure 10.)

📜 Tek RSA5100B -	[Spectrum]					
🚺 <u>F</u> ile <u>V</u> iew	Run Replay Mark	ers Setup Presets To	ols <u>W</u> indow <u>H</u> elp			_ 8 ×
🗁 💾 🤊 (°	🖻 🖻 🎯 т 蜜 🗈	🖞 🏠 Frequency: 14.0000	GHz RefLev: 0.00 dBm		Preset 🛛 🕘 Replay	/ 👻 💭 Stop 🕞
~	Trace 1 🗹 Show	+Peak Normal				Clear
dB/div:	0.0 -			MR		
10.0 dB	14 GHz					
10.0 kHz						
VBW:	-20.0 -					
	-40.0 -					
	-60.0 -					
				-/ 1\		
	-80.0 -			. N \		
	14 Walnut	all the second second second second second	where where applying the work	N Mundmillion	hallow Marine marine M.	wayant between
			1			
-1	100.0 -					
Autoscale 🔹	CF: 14.0000 GHz				0	Span: 165.0 MHz
Spectrum	Freq & Span BW	Traces Scale Prefs				
Settings	Center: 14.0	0000 GHz S	pan: 165.0 MHz	Max Span		
	Start: 13.9	9175 GHz				
	Stop: 14.0	0825 GHz				
Restore	Step Size: 10.0	0000 MHz 🛛 🗹 Auto				
Deraults						
Markers Defin	ne VMR Free	quency 👻 14 GHz	To Center Peak		Fable	X
Transfer	Acq BW: 165.00 MHz,	Acq Length: 258.595 us	Real Time Free Run	Ref: Int Atten: 15 dB		

Figure 10: 14 GHz output waveform

- **31.** Press the front panel **Play/Stop** button (or click play on the display) to *stop* the play out.
- **32.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- **33.** Disconnect the test setup.

Checking the triggered	Required equipment	Prerequisites
outputs	Oscilloscope	None
	Function Generator (AFG3021C or equivalent)	
	One TCA-SMA adapter	
	Two 50 Ω SMA cables	
	One SMA female to BNC male adapter	

- 1. Press the Home button, or click the Home tab on the display.
- 2. Click the Reset to Default Setup button in the toolbar.
- **3.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- 4. Connect a BNC to SMA adapter to the output of the function generator.
- 5. Connect an SMA cable between the output of the function generator and the Trigger A input on the rear of the AWG.
- 6. Connect a TCA-BNC adapter on the input channel of the oscilloscope.
- 7. Connect an SMA cable between the output of the AWG and the TCA-BNC adapter on the oscilloscope.

Figure 11: Equipment connection to check the triggered outputs

- 8. Set the oscilloscope as follows:
 - a. Vertical scale: 200 mV/div
 - b. Horizontal scale: 20 ns/div

- c. Trigger source: CH1
- **d.** Trigger level: 100 mV
- 9. Set the function generator output to square wave, 1 kHz, 5 V_{p-p} .
- 10. Turn on the output of the function generator.
- 11. On the AWG, load the **PV_Square.wfmx** waveform as an output waveform. Follow the steps below:
 - a. In the Waveform List window, click Open Waveform and
 - b. Navigate to C:\Program Files\Tektronix\AWG70000\Samples\PV\PV_Square.wfmx.
 - c. With waveform PV_Square.wfmx highlighted, select **Open** to load the waveform into the Waveform List.
 - **d.** In the Waveform List window, select (drag and drop) the **PV_Square.wfmx** waveform onto the work space area.
- 12. Set the Run mode to Triggered, and set the Trigger input to A.
- 13. Click the Channel On/Off button to toggle the channel output to On.

Home	Setup	Way	veform Plug	g-ins Se
Genera	Chai	nnel	Clock	Trigger
Chanı	Channel 1 🔻			el On

NOTE. The All Outputs is Off, so the channel still indicates disabled.

- 14. In the Setup tab, display the **Trigger** settings and set the External trigger controls as follows:
 - **a.** Level to 1.0 V.
 - b. Polarity to Rising.
 - c. Impedance to 50 Ω .
- **15.** Press the front panel **Play/Stop** button (or click play on the display) to *start* the play out.
- **16.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- 17. Verify that the output is displayed on the AWG work space.
- **18.** Verify that the output is displayed on the oscilloscope.

- **19.** Repeat the test for the Trigger B input: Move the cable from the Trigger A input to the Trigger B input, and then under the Run tab, set the trigger input to **B**.
- 20. Verify that the Trigger B output is displayed on the AWG work space.
- **21.** Verify that the output is displayed on the oscilloscope.
- **22.** Press the front panel **Play/Stop** button (or click play on the display) to *stop* the play out.
- **23.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- **24.** Disconnect the test setup.

Performance tests

	This section contains performance verification procedures for the specifications listed below.
	10 MHz reference frequency accuracy
	Analog amplitude accuracy
	Marker high and low level accuracy
	The procedures use "AWG" when referring to the AWG70000B series instruments.
Prerequisites	
	The tests in this section comprise an extensive, valid confirmation of performance and functionality when the following requirements are met:
	The cabinet must be installed.
	• You must have performed and passed the procedure <i>Diagnostics</i> and <i>Calibration</i> , and the procedure <i>Functional Tests</i> .
	The AWG must have been last adjusted at an ambient temperature between +20 °C and +30 °C, must have been operating for a warm-up period of at least 20 minutes, and must be operating at an ambient temperatures between +10 °C and +40 °C.
Required equipment	

Required equipment

The following table lists the test equipment required to perform the performance verification procedures. The table identifies examples of recommended equipment and lists the required precision where applicable. If you substitute other test equipment for the listed examples, the equipment must meet or exceed the listed tolerances.

Table 40: Required equipment for performance te

Item	Qty.	Minimum requirements	Recommended equipment
Frequency counter	1 ea.	Frequency accuracy: within ± 0.01 ppm	Tektronix MCA3040
Digital multimeter	1 ea.	DC accuracy: within $\pm 0.01\%$	Keithley 2000 DMM or Tektronix DMM4040/4050
Adapter	3 ea	TekConnect oscilloscope input to SMA input	Tektronix TCA-SMA
50 Ω SMA cable	3 ea.	DC to 20 GHz	Tensolite 1-3636-465-5236
50 Ω SMA termination	3 ea.	DC to 18 GHz	Tektronix part number 015-1022-01 (one is supplied with the AWG70001B, two with the AWG70002B.)

Item	Qty.	Minimum requirements	Recommended equipment
50 Ω BNC feed-through termination	1 ea.	DC to 1 GHz, feedthrough	Tektronix part number 011-0049-02
50 Ω BNC cable	1 ea.	Male connectors both ends	Tektronix part number 012-0057-01
SMA-BNC adapter	3 ea.	SMA female to BNC male connector	Tektronix part number 015-0572-00
SMA-BNC adapter	1 ea.	SMA male to BNC female connector	Tektronix part number 015-0554-00
BNC-dual banana adapter	1 ea.	BNC to dual banana plugs	Tektronix part number 103-0090-00

Table 40: Required equipment for performance tests (cont.)

Test waveformsThe following table lists the test waveforms that are used for the performance
verification procedures. These are included on the AWG hard drive at:
C:\Program Files\Tektronix\AWG70000\Samples\PV.

 Table 41: Performance test waveforms

Waveform name	Purpose
PV_DC_Minus.wfmx	For checking the analog amplitude accuracy and the marker
PV_DC_Plus.wfmx	high and low level accuracy

Test record Photocopy the test record and use it to record the performance test results. (See page 61, *Test record*.)

10 MHz reference frequency accuracy

Prerequisites
(See page 49, Prerequisites.)

1. Connect the 10 MHz Reference Output from the rear of the AWG to the input of the frequency counter using a 50 Ω SMA cable and SMA-BNC adapter.

AWG rear panel

Figure 12: Equipment connection to verify the 10 MHz reference frequency accuracy

- 2. On the frequency counter, press the Meas and the Freq buttons.
- **3.** Verify that the frequency counter reading falls within the range of 9.99999 MHz to 10.00001 MHz (±1 ppm).
- 4. Disconnect the test setup.

Analog amplitude accuracy

NOTE. If checking an AWG70001B with Option AC, ensure that Channel Output Path is set to Direct in the Channel tab under Setup to enable the analog + and – complimentary outputs.

Required equipment	Prerequisites
Digital multimeter	(See page 49, Prerequisites.)
BNC-dual banana adapter	
50 Ω BNC feed-through termination	
SMA female-BNC male adapter	
50 Ω SMA termination	

Measure the termination resistance. Before verifying the analog amplitude accuracy, you need to measure the resistance of the 50 Ω BNC termination.

1. Connect the BNC-dual banana adapter and 50 Ω BNC termination to the HI and LO inputs on the digital multimeter.

Digital multimeter

Figure 13: Equipment connection for measuring the termination resistance

- 2. Set the digital multimeter to the Ω 2 wires mode.
- 3. Measure the resistance and note the value as Term_R.
- 4. Set the digital multimeter to the **DCV** mode.

NOTE. Lead resistance is not included in the measurement results when using four wire ohms. The accuracy is higher especially for small resistances. Use a four wire method if necessary.

Check the analog amplitude accuracy.

- 1. Press the **Home** button, or click the **Home** tab on the display.
- 2. Click the Reset to Default Setup button in the toolbar.
- **3.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).

- 4. Connect an SMA-BNC adapter to the 50 Ω BNC feed-through termination on the digital multimeter.
- 5. Use the 50 Ω SMA cable to connect the CH 1 + connector on the AWG to the HI and LO inputs on the digital multimeter.
- 6. Use the 50 Ω SMA termination to terminate the CH 1 connector on the AWG.

AWG front panel

Figure 14: Equipment connection for checking the analog amplitude accuracy

- 7. On the AWG, load the **PV_DC_Plus.wfmx** waveform as an output waveform. Follow these steps:
 - a. In the Waveform List window, click **Open Waveform**.
 - b. Navigate to C:\Program Files\Tektronix\AWG70000\Samples\PV\PV_DC_Plus.wfmx.
 - c. With waveform PV_DC_Plus.wfmx highlighted, select **Open** to load the waveform into the Waveform List.
 - d. In the Waveform List window, select (drag and drop) the PV_DC_Plus.wfmx waveform onto the work space.
- 8. From the Setup tab, click the Channel tab and select Channel 1.
- 9. Set the amplitude of the AWG as shown in the first row of the table:

Table 42: A	nalog amplitud	e accuracy
-------------	----------------	------------

Amplitude settings	Accuracy limits	
250 mV _{p-p}	244 mV to 256 mV	
375 mV _{p-p}	367 mV to 383 mV	
500 mV _{p-p}	489 mV to 511 mV	

10. Click the Channel On/Off button to toggle the channel output to On.

NOTE. The All Outputs is Off, so the channel still indicates disabled.

- **11.** Press the front panel **Play/Stop** button (or click play on the display) to *start* the play out.
- **12.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- Measure the output voltage on the digital multimeter and note the value as Measured_voltage_1.
- 14. Use the following formula to compensate the voltage for the 50 Ω BNC termination:

 $V_{high} = [(Term_R + 50) / (2 Term_R)] Measured_voltage_1$

Where Term_R is the resistance of the 50 Ω BNC termination measured in step 3 in the *Measure the termination resistance* procedure. (See page 52, *Measure the termination resistance*.)

- 15. In the Waveform List window, select the PV_DC_Minus.wfmx waveform on the User Defined tab.
- Measure the output voltage on the digital multimeter and note the value as Measured_voltage_2.
- 17. Use the following formula to compensate the voltage for the 50 Ω BNC termination:

 $V_low = [(Term_R + 50) / (2 Term_R)]$ Measured_voltage_2

Where Term_R is the resistance of the 50 Ω BNC termination measured in step 3 in the *Measure the termination resistance* procedure. (See page 52, *Measure the termination resistance*.)

- **18.** Verify that the voltage difference $|(V_high-V_low)|$ falls within the limits given in the table. (See Table 42 on page 54.)
- **19.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- **20.** Repeat steps 9 through 19 for each amplitude setting in the table. (See Table 42 on page 54.)
- **21.** Move the SMA-BNC adapter from the CH 1 + connector to the CH 1 connector and move the 50 Ω SMA termination from the CH 1 connector to the CH 1 + connector.
- 22. Repeat steps 9 through 20.
- **23.** If you are testing a AWG70002B, repeat steps 9 through 22 for the Channel 2 output.
- **24.** Disconnect the test setup.

Marker high and low level accuracy

Required equipment	Prerequisites
Digital multimeter	(See page 49, Prerequisites.)
BNC-dual banana adapter	
50 Ω BNC cable	
50 Ω BNC termination	
SMA male-BNC female adapter	
50 Ω SMA termination	

+ Marker high level accuracy

- 1. Perform the *Measure the termination resistance* procedure. (See page 52, *Measure the termination resistance*.)
 - 2. Click the Reset to Default Setup button in the toolbar.
 - **3.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
 - 4. Use the 50 Ω SMA cable, SMA-BNC adapter, 50 Ω BNC feed-through termination, and BNC-Banana adapter to connect the CH 1 Markers M1 + connector on the AWG to the HI and LO inputs on the digital multimeter.
 - 5. Use the 50 Ω SMA termination to terminate the CH 1 Markers M1 connector on the AWG.

AWG front panel

NOTE. This test uses the .wfmx files that are used in the previous analog amplitude accuracytest. (See page 52, Analog amplitude accuracy.). If you did not perform that test, use step 7 in that procedure to load the waveform files, and then proceed with the following steps to activate the 8+2 markers.

- 6. In the Waveform List window, select (drag and drop) the PV_DC_Plus.wfmx waveform onto the work space.
- 7. Click on the Setup tab and select the Channel tab.
- 8. Select Channel 1.
- 9. From the Resolution (bits) drop-down list, select 8+2 Mkrs.
- 10. Click the Channel On/Off button to toggle the channel output to On.

Home	Setup	Wav	veform Plug	g-ins Se
General	Char	nnel	Clock	Trigger
Chann	nel 1 🗖		🍅 Chann	el On

NOTE. The All Outputs is Off, so the channel still indicates disabled.

- **11.** Press the front panel **Play/Stop** button (or click play on the display) to *start* the play out.
- **12.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- **13.** Set the Marker High Level setting as shown in the table shown below, starting with the first row.

Table 43:	Marker	high	level	accuracy

High level settings	Accuracy limits
+ 1.4 V	1.185 V to 1.615 V
0.0 V	–75 mV to +75 mV
–0.9 V	–1.065 V to –0.735 V

- 14. Measure the output voltage on the digital multimeter and note the value as Measured_voltage_1.
- 15. Use the following formula to compensate the voltage for the 50 Ω BNC termination:

Marker High = (Term R + 50) / (2 Term R) Measured voltage 1

Where Term_R is the resistance of the 50 Ω BNC termination measured in step 3 in the *Measure the termination resistance* procedure. (See page 52, *Measure the termination resistance*.)

- 16. Verify that the + Marker High level falls within the limits given in the table. (See Table 43.)
- 17. Repeat steps 13 through 16 until all rows in the table have been completed. (See Table 43.)
- **18.** Press the front panel **Play/Stop** button (or click play on the display) to *stop* the play out.
- **19.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).
- + Marker low level accuracy
- **20.** Press the **Home** button, or click the **Home** tab on the display.
- 21. In the Waveform List window, select (drag and drop) the PV_DC_Minus.wfmx waveform onto the work space.
- **22.** Press the front panel **Play/Stop** button (or click play on the display) to *start* the play out.
- **23.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *enable* the outputs (front panel light off).
- **24.** Set the Marker Low Level setting as shown in the table shown below, starting with the first row.

Table 44: Marker low level accuracy

Low level settings	Accuracy limits
+ 0.9 V	0.735 V to 1.065 V
0.0 V	–75 mV to +75 mV
-1.4 V	–1.615 V to –1.185 V

- **25.** Measure the output voltage on the digital multimeter and note the value as **Measured_voltage_2**.
- **26.** Use the following formula to compensate the voltage for the 50 Ω BNC termination:

Marker Low = (Term R + 50) / (2 Term R) Measured voltage 2

- **27.** Verify that the Marker Low level falls within the limits given in the table. (See Table 44.)
- **28.** Repeat steps 24 through 27 until all rows in the table have been completed. (See Table 44.)
- **29.** Press the front panel **Play/Stop** button (or click play on the display) to *stop* the play out.
- **30.** Press the front panel **All Outputs Off** button (or click All Outputs Off on the Home screen) to *disable* the outputs (front panel light on).

 Marker high level accuracy 	31. Move the SMA-BNC adapter from the CH 1 Markers M1 + connector to the CH 1 Markers M1 – connector and move the 50 Ω SMA termination from the CH 1 Markers M1 – connector to the CH 1 Markers M1 + connector.
	NOTE. The waveform files used in the – markers tests are the same as used in the + markers tests, but in opposite: When testing the Markers M1 – output, the marker high level accuracy is tested using the PV_DC_Minus.wfmx waveform file, and the marker low level accuracy is tested using the PV_DC_Plus.wfmx waveform file.
	32. Using the PV_DC_Minus.wfmx file (already present from previous check), repeat steps 11 through 19 to complete the M1 – Marker High Level accuracy test.
– Marker low level accuracy	The marker low level accuracy is tested using the PV_DC_Plus.wfmx file.
	33. In the Waveform List window, select (drag and drop) the PV_DC_Plus.wfmx waveform onto the work space.
	 34. Repeat steps 22 through 30 to complete the low level accuracy test for the M1 – Marker Low Level output.
CH 1 Markers M2 + and M2 – accuracy	35. Repeat steps 6 through 34 for CH 1 Markers M2 + and M2 – outputs.
AWG70002B marker accuracy	36. If you are testing an AWG70002B, repeat the marker test (steps 1 through 35) for the Channel 2 marker outputs.
-	37. Disconnect the test setup.

Test record

AWG70000B series performance test record

Photocopy the test record pages and use them to record the performance test results for your AWG.

Instrument Model:					
Instrument Serial Numb	er:	C	ertificate Number:		
Temperature: Date of Calibration:		RH %:			
		Technician:			
Performance Test		Minimum	Incoming	Outgoing	Maximum
10 MHz Deference Frequency Accuracy		0 00000 MH-		10 00001 MHz	
TO MILIZ Reference Freq	dency Accuracy	3.33333 Will 12			10.00001 1012
Analog Amplitude Accu	racy				
AWG70001B, AWG	70002B				
Ch 1 +	Amplitude				
	250 mV _{p-p}	244 mV			256 mV
	375 mV _{p-p}	367 mV			383 mV
	500 mV _{p-p}	489 mV			511 mV
Ch 1 –	Amplitude				
	250 mV _{p-p}	244 mV			256 mV
	375 mV _{p-p}	367 mV			383 mV
	500 mV _{p-p}	489 mV			511 mV
AWG70002B					
Ch 2 +	Amplitude				
	250 mV _{p-p}	244 mV			256 mV
	375 mV _{p-p}	367 mV			383 mV
	500 mV _{p-p}	489 mV			511 mV
Ch 2 –	Amplitude				
	250 mV _{p-p}	244 mV			256 mV
	375 mV _{p-p}	367 mV			383 mV
	500 mV _{p-p}	489 mV			511 mV

Performance tests

Performance Test		Minimum	Incoming	Outgoing	Maximum
Marker High and Low Leve	el Accuracy				
AWG70001B, AWG70	002B				
Ch 1 Marker	M1 +				
	High level	1.185 V			1.615 V
		–75 mV			+75 mV
		–1.065 V			–0.735 V
	Low level	0.735 V			1.065 V
		–75 mV			+75 mV
		-1.615 V			–1.185 V
	M1 –				
	High level	1.185 V			1.615 V
		–75 mV			+75 mV
		–1.065 V			–0.735 V
	Low level	0.735 V			1.065 V
		–75 mV			+75 mV
		–1.615 V			–1.185 V
	M2 +				
	High level	1.185 V			1.615 V
		_75 mV			+75 mV
		-1.065 V			–0.735 V
		0.705.14			4.005.14
	Low level	0.735 V			1.065 V
		<u>-/5 mV</u>			+/5 mV
		-1.615 V			–1.185 V
	M2 –				4.045.14
	High level	1.185 V			1.615 V
		<u>-75 mV</u>			+75 mV
		–1.065 V			–0.735 V
	Low level	0.735 V			1.065 V
		–75 mV			+75 mV
		–1.615 V			–1.185 V

Performance Test		Minimum	Incoming	Outgoing	Maximum
Marker High and Low Leve	l Accuracy				
AWG70002B					
Ch 2 Markers	M1 +				
	High level	1.185 V			1.615 V
		–75 mV			+75 mV
		-1.065 V			–0.735 V
	Low level	0.735 V			1.065 V
		–75 mV			+75 mV
		–1.615 V			–1.185 V
	M1 –				
	High level	1.185 V			1.615 V
	-	–75 mV			+75 mV
		–1.065 V			–0.735 V
	l ow level	0.735 V			1.065 V
		–75 mV			+75 mV
		-1.615 V			–1.185 V
	M2 +				
	High level	1.185 V			1.615 V
	-	–75 mV			+75 mV
		–1.065 V			–0.735 V
	Low level	0.735 V			1.065 V
		-75 mV			+75 mV
		–1.615 V			–1.185 V
	M2 –				
High level	High level	1.185 V			1.615 V
	3	–75 mV			+75 mV
		-1.065 V			–0.735 V
	Low level	0.735 V			1.065 V
		_75 mV			+75 mV
		-1.615 V			–1.185 V