PXI-5922 Specifications

Contents

PXI-5922 Specifications	3

PXI-5922 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. **Warranted** specifications are ensured by design, or verified during production and calibration.

The following characteristic specifications describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- **Measured (meas)** specifications describe the measured performance of a representative model.

Specifications are *Typical* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Full operating temperature range
- All impedance selections
- All sample rates
- Source impedance ≤50 Ω

Specifications are valid under the following conditions unless otherwise noted:

Ambient temperatures of 15 °C to 35 °C

PXI-5922 Pinout

Use the pinout to connect to terminals on the PXI-5922.

Connectors

The PXI-5922 has the following six connectors on the front panel.

Connector	Description	Function
CH 0, CH 1	Standard BNC connector	Analog input connection; digitizes data and triggers acquisitions
TRIG	Standard BNC connector	External analog trigger connection; signals on the TRIG connector cannot be digitized
CLK IN	SMB jack	Imports an external reference clock to the digitizer
CLK OUT	SMB jack	Exports the digitizer reference clock
AUX I/O	9-pin mini-circular DIN connector	Provides access to the external digital trigger lines, PFI 0 and PFI 1 (with optional cable)

PXI-5922 AUX I/O Connector Pin Assignments

Figure 1. 9-Pin DIN Connector

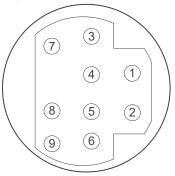


Table 1. Pin Assignments and Connector Descriptions

Pin Number	Description
1	5 V (Fused)
2	GND
3	Reserved

Pin Number	Description
4	Reserved
5	Reserved
6	PFI 1
7	Reserved
8	Reserved
9	PFI 0

Note Be sure to use an NI adapter cable or a cable that has the same pinout shown in the previous figure.

Vertical

Analog Input

Number of channels	Software-selectable: two simultaneously sampling, single-ended or unbalanced differential channels or one differential channel
Connector	BNC

Impedance and Coupling

Input impedance	Software-selectable: 50 Ω ±2.0% or 1 M Ω ±2.0% in parallel with a nominal capacitance of 60 pF
Input coupling	AC, DC, GND

Voltage Levels

Full-scale (FS) inpu	ut range	±1 V (2 V _{pk-pk}) ±5 V (10 V _{pk-pk})
Maximum input overload		
50 Ω	7 V RMS with Peaks ≤10 V	
1 ΜΩ	Peaks ≤42 V	

Accuracy

Table 2. PXI-5922 Resolution

Sample Rate	Resolution
50 kS/s	24 bits
500 kS/s	24 bits
1 MS/s	22 bits
5 MS/s	20 bits
10 MS/s	18 bits
15 MS/s	16 bits

DC accuracy ¹	
2 V _{pk-pk} range	$\pm (0.05\%$ of input + 50 μ V), warranted
10 V _{pk-pk} range	±(0.05% of input + 100 μV), warranted

1. 1 $M\Omega$ input impedance; within ±5 °C of self-calibration temperature.

DC drift ²	
2 V _{pk-pk} range	±(0.002% of input + 5 μV per °C), nominal
10 V _{pk-pk} range	±(0.002% of input + 10 μV per °C), nominal

AC amplitude accuracy		0.06% at 1 kHz ³
Crosstalk ⁴		
At 100 kHz	≤-110 dB	
At 1 MHz	≤-100 dB	
At 6 MHz	≤-80	dB

Common-mode rejection ratio (CMRR) 50 dB up to 1 kHz ⁵	Common-mode rejection ratio (CMRR)	50 dB up to 1 kHz ⁵	
---	------------------------------------	--------------------------------	--

- $2.\,1\,\text{M}\Omega$ input impedance.
- 3. 1 $M\Omega$ input impedance; within ±5 °C of self-calibration temperature.
- 4. CH 0 to/from CH 1, External Trigger to CH 0 or CH 1.
- 5. Unbalanced differential input terminal configuration.

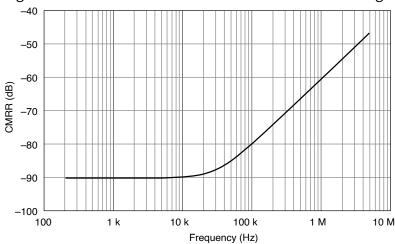


Figure 2. PXI-5922 CMRR with Differential Terminal Configuration, Measured

Bandwidth and Transient Response

Alias-free bandwidth	0.4 × Sample Rate
----------------------	-------------------

Table 3. Alias Protection⁶

Sample Rate	Attenuation
<5 MS/s	100 dB
5 MS/s	96 dB
(5 MS/s, 7.5 MS/s)	90 dB
[7.5 MS/s, 15 MS/s]	80 dB

AC coupling cutoff (-3 dB)	90 Hz
----------------------------	-------

6. Input frequencies ≥ 0.6 × *Sample Rate*.

Table 4. Passband Flatness⁷

Sample Rate	50Ω and 1 $M\Omega$
1 MS/s	0.03 dB
5 MS/s	0.06 dB
10 MS/s	0.15 dB
15 MS/s	0.3 dB

Figure 3. 100 kS/s Frequency Response, Measured

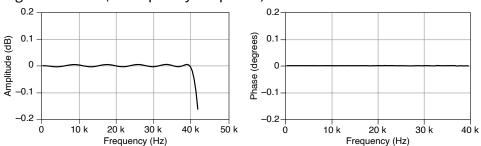


Figure 4. 1 MS/s Frequency Response, Measured

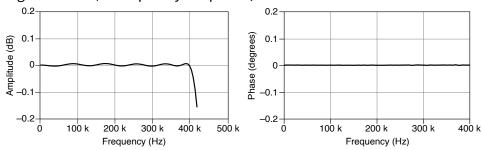
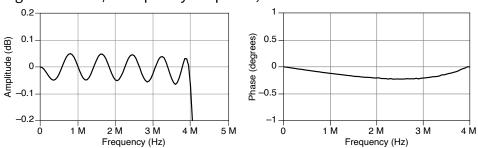



Figure 5. 10 MS/s Frequency Response, Measured

7. Referenced to DC; input frequencies up to 0.4 × *Sample Rate*.

Spectral Characteristics

Table 5. Spurious-Free Dynamic Range (SFDR)⁸

Input Ra		Range
Frequency	10 V _{pk-pk}	2 V _{pk-pk}
10 kHz	114 dBc	109 dBc
100 kHz	110 dBc	103 dBc
1 MHz	96 dBc	92 dBc

Figure 6. PXI-5922 Dynamic Performance with 10 kHz Input Signal, Measured,1 M Ω , 10 V_{pk-pk} Range, 500 kS/s, Unbalanced Differential, 10,000-Point FFT with 10 Averages

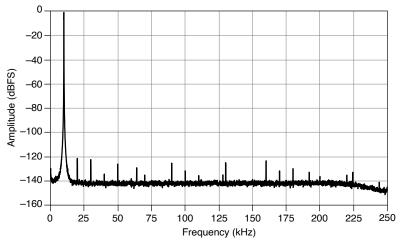
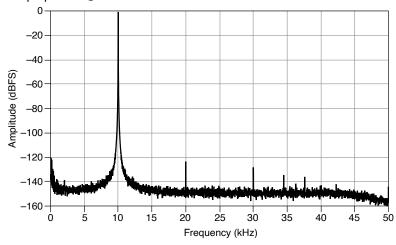



Figure 7. PXI-5922 Dynamic Performance with 10 kHz Input Signal, Measured, 1 M Ω , 2 V_{pk-pk} Range,100 kS/s, Unbalanced Differential, 10,000-Point FFT with 10 Averages

8. -1 dBFS input signal; $\it Sample Rate$ is 10 × input frequency; within ±2 °C of self-calibration temperature.

Table 6. Total Harmonic Distortion (THD)⁹

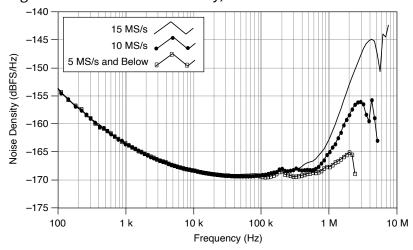
Input	Range	
Frequency	10 V _{pk-pk}	2 V _{pk-pk}
10 kHz	-112 dBc	-107 dBc
100 kHz	-108 dBc	-101 dBc
1 MHz	-94 dBc	-90 dBc

Table 7. Signal-to-Noise and Distortion (SINAD)¹⁰

Sample		Range	
Rate	10 V _{pk-pk}	2 V _{pk-pk}	
1 MS/s	105 dB	99 dB	
10 MS/s	89 dB	87 dB	

Table 8. Signal-to-Noise Ratio (SNR) without Harmonics 11

Sample	Range	
Rate	10 V _{pk-pk}	2 V _{pk-pk}
1 MS/s	108 dB	104 dB
10 MS/s	91 dB	90 dB


Table 9. RMS Noise. Warranted 12

		Range			
Sample Rate	10 V _{pk-pk}		2 V _{pk-pk}		
	dBFS	μV _{rms}	dBFS	μV_{rms}	
50 kS/s	-120	3.4	-117	1.0	

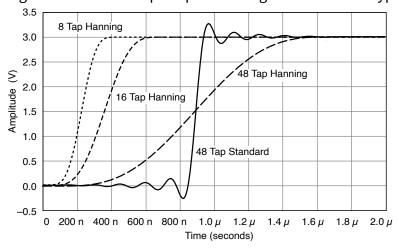
- 9. -1 dBFS input signal; includes the second through the fifth harmonics; within ± 2 °C of self-calibration temperature.
- 10. -1 dBFS input signal; input frequency is 0.1 × **Sample rate**; within ±2 °C of self-calibration temperature; calculated from THD and RMS noise.
- 11. -1 dBFS input signal; input frequency is 0.1 × *Sample rate*; within ±2 °C of self-calibration temperature; calculated from SINAD and THD.
- 12. 100 Hz to $0.4 \times$ **Sample rate**; DC coupling; input 50 Ω terminated.

	Range			
Sample Rate	10	V _{pk-pk}	2 V _p	ok-pk
	dBFS	μV _{rms}	dBFS	μV_{rms}
100 kS/s	-118	4.3	-115	1.2
1 MS/s	-108	13	-104	4.2
5 MS/s	-101	31	-98	8.7
10 MS/s	-91	92	-91	20
15 MS/s	-79	401	-79	80

Figure 8. PXI-5922 Noise Density, Measured ¹³

Skew, Input Bias Current

Channel-to-channel skew ¹⁴	≤500 ps
Input bias current ¹⁵	≤500 nA, warranted


- 13. Plotted Without Spurs.
- 14. 1 MHz input, 5 MS/s sample rate.
- 15. Within ±5 °C of self-calibration temperature.

Settling Time

Table 10. Settling Time¹⁶

Filter Type ¹⁷	1%	0.01%
48 Tap Standard	800 ns	2.5 μs
48 Tap Hanning	700 ns	1.5 μs
16 Tap Hanning	300 ns	1.4 μs
8 Tap Hanning	200 ns	1.3 μs

Figure 9. PXI-5922 Step Response Using Different Filter Types, Measured ¹⁸

^{16.} For a 3 V step from 0 V DC, excluding noise; time referenced to 1.5 V (50%) trigger; applies to 15 MS/s sample rate only.

^{17.} To set or change the filter type, use the Flex FIR Antialias Filter Type property or the NISCOPE_ATTR_FLEX_FIR_ANTIALIAS_FILTER_TYPE attribute.

^{18.} Time (t= 0) represents the actual time the edge arrived at the BNC connector on the NI 5922.

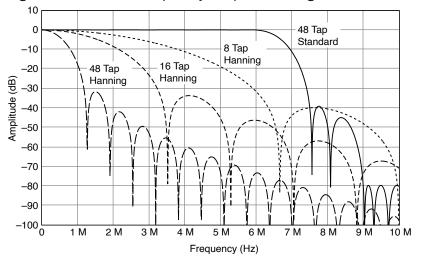


Figure 10. PXI-5922 Frequency Response Using Different Filter Types, Measured

Horizontal

Sample Clock

|--|

Onboard Clock (Internal VCXO)

Sample rate range, real-time sampling (single shot) ²⁰		50 kS/s to 15 MS/s
Phase noise density (5 MHz input signal)	noise density (5 MHz input signal)	
At 10 kHz	<-133 dBc/Hz	
At 100 kHz	<-145 dBc/Hz	

- 19. Internal Sample clock is locked to the Reference clock or derived from the onboard VCXO.
- 20. Available rates are (60 MS/s) /n where n is an integer value from 4 to 1200. The Sample clock period is n/(60MS/s).

Sample clock jitter ²¹	≤3 ps RMS (100 Hz to 1 MHz)	
Timebase frequency	120 M	1Hz
Timebase accuracy		
Not phase-locked to Reference clock		±50 ppm, warranted
Phase-locked to Reference clock		Equal to the Reference clock accuracy

Sample clock delay range	±1 Sample clock period
Sample clock delay resolution	400 ps

Phase-Locked Loop (PLL) Reference Clock

Reference clock sources	PXI_CLK 10 (backplane connector) CLK IN (front panel SMB connector)
Frequency range	1 MHz to 20 MHz in 1 MHz increments ²² ; must be accurate to ±50 ppm
Duty cycle tolerance	45% to 55%

- 21. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter; excludes trigger jitter.
- 22. The default value is 10 MHz.

CLK OUT (front panel SMB connector) PFI <01> (front panel 9-pinmini-circular DIN connector)
PXI_TRIG <06> (backplane connector)

CLK IN (Reference Clock Input, Front Panel Connector)

Input voltage range	Square wave: 0.2 V _{pk-pk} to 1 V _{pk-pk}
Maximum input overload	7 V RMS with Peaks ≤10 V
Impedance	50 Ω
Coupling	AC

CLK OUT (Reference Clock Output, Front Panel Connector)

Output impedance	50 Ω
Logic type	5 V CMOS
Maximum drive current	±50 mA

Trigger

Reference (Stop) Trigger

Trigger types	Edge Window Hysteresis Digital Immediate Software
Trigger sources	CH 0 CH 1 TRIG PXI_Trig < 06> PFI < 01> PXI Star Trigger RTSI < 06> Software
Time resolution	Sample clock period
Rearm time	144 × Sample clock period ²³

23. Holdoff set to 0.

Holdoff	Up to (2 ³² - 1) × Sample clock period
---------	--

Related information:

• Refer to the NI High-Speed Digitizers Help for more information about the sources available for each trigger type.

Analog Trigger

Trigger types	Edge Window Hysteresis	
Sources ²⁴	CH 0 (front panel BNC connector) CH 1 (front panel BNC connector) TRIG (front panel BNC connector)	
Trigger level range	100% FS	
Edge trigger sensitivity		
CH 0, CH 1		2% FS
RIG (external trigger)		0.3 V _{pk-pk} up to 1 MHz

Jitter

24. TRIG is an analog edge trigger only.

Digital Trigger

Trigger type	Digital
Sources	PXI_TRIG <06> (backplane connector) PFI <01> (front panel 9-pin DIN connector) PXI Star Trigger (backplane connector)

External Trigger

Source	TRIG (front panel BNC connector)
Impedance	100 k Ω in parallel with 52 pF, nominal
Input voltage range	±2.5 V
Coupling	DC
Level accuracy	±0.3 V up to 100 kHz
Maximum input overload	Peaks ≤42 V

PFI 0 and PFI 1 (Programmable Function Interface, AUX Front **Panel Connectors**)

Connector	9-pin mini-circular DIN

Dii	rection	Bidirectional

As an Input (Trigger)

Destinations	Start trigger (acquisition arm) Reference (stop) trigger Arm Reference trigger Advance trigger
Input impedance	150 k Ω , nominal
V _{IH}	2.0 V
V _{IL}	0.8 V
Maximum input overload	-0.5 V, 5.5 V
Maximum frequency	25 MHz

As an Output (Event)

	Start trigger (acquisition arm)
Sources	Reference (stop) trigger
	End of Record

	Done (end of acquisition)
Output impedance	50 Ω
Logic type	3.3 V CMOS
Maximum drive current	±24 mA
Maximum frequency	20 MHz

Waveform Specifications

Onboard memory size	
8 MB/channel	2 MS/channel
32 MB/channel	8 MS/channel
256 MB/channel	64 MS/channel

Minimum record length	1 Sample
Number of pretrigger samples	0 up to full Record Length for both single-record mode and multiple-record mode

Number of posttrigger samples	0 up to full Record Length for both si record mode	ngle-record mode and multiple-
Maximum number of records in onboard memory ²⁵		
8 MB/channel		13,107
32 MB/channel		52,428
256 MB/channel		100,000

Allocated onboard memory per record	(<i>Record Length</i> × 4 bytes/S) + 400 bytes, rounded up to next multiple of 128 bytes or 640 bytes, whichever is greater

Calibration

Self-calibration	Self-calibration is done on software command. The calibration corrects for gain and offset for all input ranges, input bias current, and nonlinearities in the ADCs.
External calibration (factory calibration)	The external calibration calibrates the VCXO and the voltage reference. Appropriate constants are stored in nonvolatile memory.
Interval for external	2 years

25. It is possible to exceed these numbers if you fetch records while acquiring data. For more information, refer to the *NI High-Speed Digitizers Help*.

calibration	
Warm-up time	15 minutes

Software

Driver Software

Driver support for this device was first available in NI-SCOPE2.8.

NI-SCOPE is an IVI-compliant driver that allows you to configure, control, and calibrate the PXI-5922. NI-SCOPE provides application programming interfaces for many development environments.

Application Software

NI-SCOPE provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindows[™]/CVI[™]
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)

Interactive Soft Front Panel and Configuration

When you install NI-SCOPE on a 64-bit system, you can monitor, control, and record measurements from the PXI-5922 using InstrumentStudio.

InstrumentStudio is a software-based front panel application that allows you to perform interactive measurements on several different device types in a single program.

Note InstrumentStudio is supported only on 64-bit systems. If you are using a 32-bit system, use the NI-SCOPE-specific soft front panel instead of InstrumentStudio.

Interactive control of the PXI-5922 was first available via InstrumentStudio in NI-SCOPE18.0 and via the NI-SCOPE SFP in NI-SCOPE2.2. InstrumentStudio and the NI-SCOPE SFP are included on the NI-SCOPE media.

NI Measurement & Automation Explorer (MAX) also provides interactive configuration and test tools for the PXI-5922. MAX is included on the driver media.

TClk Specifications

You can use the NI TClk synchronization method and the NI-TClk driver to align the Sample clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the **NI-TClk Synchronization Help**, which is located within the **NI High-Speed Digitizers Help**. For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support.

Intermodule SMC Synchronization Using NI-TClk for Identical Modules

Specifications are valid under the following conditions:

- Any number of PXI modules installed in one NI PXI-1042 chassis.
- All parameters set to identical values for each SMC-based module.
- Sample clock set to 15 MS/s and all filters disabled.

Skew ²⁶	500 ps
Average skew after manual adjustment	<10 ps

26. Caused by clock and analog path delay differences. No manual adjustment performed.

Sample clock delay/adjustment resolution	≤5 ps
--	-------

Related information:

- For information about manual adjustment, refer to the Synchronization Repeatability Optimization topic in the NI-TClk Synchronization Help within the NI High-Speed Digitizers Help.
- For additional help with the adjustment process, contact NI Technical support at ni.com/support.

Power

Current draw	
+3.3 V DC	2.0 A
+5 V DC	1.4 A
+12 V DC	330 mA
-12 V DC	280 mA
	1

Physical

Total power

Dimensions 3U, one-slot, PXI/cPCI module	
--	--

20.9 W

	21.6 cm × 2.0 cm × 13.0 cm (8.5 in × 0.8 in × 5.1 in)
Weight	336 g (11.8 oz)

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution degree	2
Indoor use only	

Note To ensure that the PXI-5922 cools effectively, follow the guidelines in the *Maintain Forced-Air Cooling Note to Users* available at <u>ni.com/docs</u>. The PXI-5922 is intended for indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C in all NI PXI chassis except the following: 0 °C to +45 °C when installed in an NI PXI-1000/B or PXI-101x chassis. (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and

range	IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)	
Storage Shock	50 g, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27.Test profile developed in accordance with MIL-PRF-28800F.)	
Random vibration		
Operating	5 Hz to 500 Hz, 0.31 g _{rms} (Tested in accordance with IEC 60068-2-64.)	
Nonoperatin	5 Hz to 500 Hz, 2.46 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)	

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u>

Certifications and Declarations section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国RoHS)

• ◎ ⑤ ● 中国RoHS — NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/ rohs chinao (For information about China RoHS compliance, go to ni.com/ environment/rohs china.)