PXIe-7891 Specifications

Contents

|--|

PXIe-7891 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- *Measured* specifications describe the measured performance of a representative model.

Specifications are *Typical* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature of 0 °C to 55 °C .
- Installed in chassis with slot cooling capacity ≥58 W.

Front Panel

The following image shows the front panel of the PXIe-7891 module. This document groups specifications per connector on the front panel.

Figure 1. PXIe-7891 Front Panel

	•	()
FlexRIO M	PXIe-789	1 I/O Module
PORTO	CONNECTOR 1 (2 MS/s/ct	CONNECTOR 3 (4 MS/s/ct
PORT 1	1, AO 0 to 31)	1, AO 0 to 3 1)
		CONNECTOR 4 (DIO 0 to 31)
		$\overset{\wedge}{}$

Connector Pinouts

PORT 0 and PORT 1

The following image shows the pinout for the PORT 0 and PORT 1 QSFP connectors.

Figure 2. QSFP Connector Pinout

GND	20	19	GND
Rx2n	21	18	Rx1n
Rx2p	22	17	Rx1p
GND	23	16	GND
Rx4n	24	15	Rx3n
Rx4p	25	14	Rx3p
GND	26	13	GND
ModPrsL	27	12	SDA
IntL	28	11	SCL
Vcc Tx	29	10	Vcc Rx
Vcc1	30	9	ResetL
LPMode	31	8	ModSelL
GND	32	7	GND
Тх3р	33	6	Tx4p
Tx3n	34	5	Rx4n
GND	35	4	GND
Tx1p	36	3	Tx2p
Tx1n	37	2	Tx2n
GND	38	1	GND
			J

Table 1. Pin Descriptions for PORT 0 and PORT 1 Connectors

Pin	Description		
Txn <14>	Transmitter Inverted Data Input		
Txp <14>	Transmitter Non-Inverted Data Input		
Rxn <14>	Receiver Inverted Data Output		
Rxp <14>	Receiver Non-Inverted Data Output		
SCL	2-Wire Serial Interface Clock		
SDA	2-Wire Serial Interface Data		
ModPrsL	Module Present		
ModSelL	Module Select		
ResetL	Module Reset		
IntL	Interrupt		
LPMode	Low Power Mode		

Pin	Description
Vcc Rx	+3.3 V Power Supply Receiver
Vcc Tx	+3.3 V Power Supply Transmitter
Vcc1	+3.3 V Power Supply
GND	Ground

Notice The maximum input signal levels are valid only when the module is powered on. To avoid permanent damage to the PXIe-7890/7891, do not apply a signal to the device when the module is powered down.

Notice Connections that exceed any of the maximum ratings of any connector on the PXIe-7890/7891 can damage the device and the system. NI is not liable for any damage resulting from such connections.

CONNECTOR 0 and CONNECTOR 4

The following image shows the pinouts for CONNECTOR 0 and CONNECTOR 4.

Figure 3. Digital I/O (DIO) Connectors

Connector 0

Connector 4

	_	\sim			\frown	_	
	\bigcap						
GND	68	34	GND	DIO31	1	35	DIO30
EXTCLKIN	67	33	GND	GND	2	36	GND
GND	66	32	GND	DIO29	3	37	DIO28
DIO0	65	31	DIO1	GND	4	38	GND
GND	64	30	GND	DIO27	5	39	DIO26
DIO2	63	29	DIO3	GND	6	40	GND
GND	62	28	GND	DIO25	7	41	DIO24
DIO4	61	27	DIO5	GND	8	42	GND
GND	60	26	GND	DIO23	9	43	DIO22
DIO6	59	25	DIO7	GND	10	44	GND
GND	58	24	GND	DIO21	11	45	DIO20
DIO8	57	23	DIO9	GND	12	46	GND
GND	56	22	GND	DIO19	13	47	DIO18
DIO10	55	21	DIO11	GND	14	48	GND
GND	54	20	GND	DIO17	15	49	DIO16
DIO12	53	19	DIO13	GND	16	50	GND
GND	52	18	GND	DI015	17	51	DIO14
DIO14	51	17	DIO15	GND	18	52	GND
GND	50	16	GND	DIO13	19	53	DIO12
DIO16	49	15	DIO17	GND	20	54	GND
GND	48	14	GND	DIO11	21	55	DIO10
DIO18	47	13	DIO19	GND	22	56	GND
GND	46	12	GND	DIO9	23	57	DIO8
DIO20	45	11	DIO21	GND	24	58	GND
GND	44	10	GND	DIO7	25	59	DIO6
DIO22	43	9	DIO23	GND	26	60	GND
GND	42	8	GND	DIO5	27	61	DIO4
DIO24	41	7	DIO25	GND	28	62	GND
GND	40	6	GND	DIO3	29	63	DIO2
DIO26	39	5	DIO27	GND	30	64	GND
GND	38	4	GND	DIO1	31	65	DIO0
DIO28	37	3	DIO29	GND	32	66	GND
GND	36	2	GND	GND	33	67	EXTCLKIN
DIO30	35	1	DIO31	GND	34	68	GND
							J
		\sim)		\smile		

Table 2. Pin Descriptions for CONNECTOR 0 and CONNECTOR 4

Pin	Description	Signal Name in LabVIEW
DIO <031>	Bidirectional digital input/ output signal connection	Digital Input: • Conn0 DI / Ch <031> • Conn4 DI / Ch <031> Digital Output:

Pin	Description	Signal Name in LabVIEW
		 Conn0 DO / Ch <031> Conn4 DO / Ch <031>
EXTCLKIN	External clock input source that can be used for source synchronous acquisitions; the provided clock source must be stable and glitch free	Conn 0 External Clock Conn 4 External Clock
GND	Ground reference for digital signals	
NC	No connection	_

CONNECTOR 1 and CONNECTOR 3

The following image shows the pinout for CONNECTOR 1 and CONNECTOR 3.

Figure 4. Analog Output (AO) Connectors

)
AO31	1	35	AO30
GND	2	36	GND
AO29	3	37	AO28
GND	4	38	GND
AO27	5	39	AO26
GND	6	40	GND
AO25	7	41	AO24
GND	8	42	GND
AO23	9	43	AO22
GND	10	44	GND
AO21	11	45	AO20
GND	12	46	GND
AO19	13	47	AO18
GND	14	48	GND
AO17	15	49	AO16
GND	16	50	GND
AO15	17	51	AO14
GND	18	52	GND
AO13	19	53	AO12
GND	20	54	GND
AO11	21	55	AO10
GND	22	56	GND
AO9	23	57	AO8
GND	24	58	GND
AO7	25	59	AO6
GND	26	60	GND
AO5	27	61	AO4
GND	28	62	GND
AO3	29	63	AO2
GND	30	64	GND
AO1	31	65	AO0
GND	32	66	GND
NC	33	67	NC
GND	34	68	GND
)
	\smile		

 $\left(\right)$

Table 3. Pin Descriptions for CONNECTOR 1 and CONNECTOR 3

Pin	Description	Signal Name in LabVIEW
AO <015> (PXIe-7890) AO <031> (PXIe-7891)	Analog output signal connection	 PXIe-7890: Calibrated: Conn1 AO / Ch <015> Calibrated: Conn3 AO / Ch <015> Uncalibrated: Conn1 AO Raw / Ch <015>

Pin	Description	Signal Name in LabVIEW
		 Uncalibrated: Conn3 AO Raw / Ch <015> PXIe-7891: Calibrated: Conn1 AO / Ch <031> Calibrated: Conn3 AO / Ch <031> Uncalibrated: Conn1 AO Raw / Ch <031> Uncalibrated: Conn3 AO Raw / Ch <031>
GND	Ground reference for the analog output signal	_
NC	No Connection	_

CONNECTOR 2

The following image shows the pinout for CONNECTOR 2, the analog input VHDCI front panel connector.

GND	1	35	GND		
A I 0+	2	36	GND		
Al0-	3	37	AI1+		
GND	4	38	AI1-		
Al2+	5	39	GND		
AI2-	6	40	AI3+		
GND	7	41	AI3-		
A I 4+	8	42	GND		
AI4-	9	43	AI5+		
GND	10	44	AI5-		
AI6+	11	45	GND		
AI6-	12	46	AI7+		
GND	13	47	AI7-		
A I 8+	14	48	GND		
A I 8-	15	49	AI9+		
GND	16	50	AI9-		
AI10+	17	51	GND		
AI10-	18	52	AI11+		
GND	19	53	AI11-		
A I 12+	20	54	GND		
AI12-	21	55	AI13+		
GND	22	56	AI13-		
AI14+	23	57	GND		
AI14-	24	58	AI15+		
GND	25	59	AI15-		
GND	26	60	GND		
GND	27	61	GND		
GND	28	62	GND		
GND	29	63	GND		
GND	30	64	GND		
GND	31	65	GND		
GND	32	66	GND		
GND	33	67	GND		
GND	34	68	GND		
)		

Figure 5. Analog Input (AI) VHDCI Connector

Table 4. Pin Descriptions for CONNECTOR 2

Pin	Description	Signal Name in LabVIEW
Al <0+7+> (PXIe-7890) Al <0+15+> (PXIe-7891)	Positive analog input signal connection	PXIe-7890: • Calibrated: Conn2 AI / Ch <07>
Al <07-> (PXIe-7890) Al <015-> (PXIe-7891)	Negative analog input signal connection	 Uncalibrated:Conn2 AI / Ch <07> PXIe-7891:

Pin	Description	Signal Name in LabVIEW
		 Calibrated: Conn2 AI / Ch <015> Uncalibrated:Conn2 AI / Ch <015>
GND	Ground reference for the analog input signal	_
NC	No connection	_

Port 0 and Port 1

Connector	QSFP, SFF-8436 compliant
Data rate	500 Mbps to 5 Gb/s
Number of lanes	8 RX/TX (GTH)
Supported high-speed cable type	Electrical/ optical
Optical cable power	3.3 V ±5%, 1 A per port

Multi-Gigabit Transceiver (MGT)

MGT TX± Channels

Note For detailed FPGA and High-Speed Serial Link specifications, refer to Xilinx documentation.

Minimum differential output voltage ¹	170 mV pk-pk into 100 Ω, nominal
I/O coupling	AC-coupled, includes 100 nF capacitor

MGT RX± Channels

Differential input voltage range at ≤ 6.6 Gb/s	150 mV pk-pk to 2000 mVpk-pk , nominal
--	--

MGT Reference Clock Generator

Supported generated frequencies	60.000 MHz to 385.714 MHz 400.000 MHZ to 450.000 MHz 480.000 MHz to 675.000 MHz 685.714 MHz to 771.428 MHz 800 MHz
Clocking resources	PXIe_CLK100
Available MGT Reference Clocks	4

Connector 0 and Connector 4

The following section describes the digital input and output characteristics accessible through CONNECTOR 0 and CONNECTOR 4.

1. 800 mV pk-pk when transmitter output swing is set to the maximum setting.

CONNECTOR 0 and CONNECTOR 4 are identical and share the same pinout, but are oriented in opposite directions on the module. For more information, including pinout descriptions, refer to the *PXIe-7890/7891 Getting Started* content in the NI Product Documentation Center.

Connectors 0 and 4	68-pin VHDCI receptacle

Note The number of channels listed in each of the following sections represents the total number of channels for both CONNECTOR 0 and CONNECTOR 4. To determine the number of channels for a single connector, divide the listed number of channels in half.

Related information:

<u>NI Product Documentation Center</u>

Digital I/O

Number of channels		64
Signal type		Single-ended
Voltage level		
Digital input	3.3 V / 5 V (selectable by bank of 16 channels)	
Digital output	3.3 V / 5 V (selectable by bank of 16 channels)	
Direction control		Per channel

Latency	25 ns
Power-on-state	Digital input
Number of external clock input	2
Protection	±15 V per line, up to two lines simultaneously

Note Digital input and output voltage levels are guaranteed by design through the digital buffer specifications.

Table 5. Digital Input Logic Levels

Voltage Family	Input Low Voltage (V _{IL}) Maximum	Input High Voltage (V _{IH}) Minimum
3.3 V	0.80 V	2.00 V
5.0 V	1.50 V	3.50 V

Minimum input voltage	0 V
Maximum input voltage	5 V
Input impedance	100 kΩ, pull-down

Table 6. Digital Output Logic Levels

Voltage Family	Current	Output Low Voltage (V _{OL}) Maximum	Output High Voltage (V _{OH}) Minimum
3.3 V	100 µA	0.10 V	3.20 V

Voltage Family	Current	Output Low Voltage (V _{OL}) Maximum	Output High Voltage (V _{OH}) Minimum
	4 mA	0.45 V	2.85 V
EM	100 µA	0.10 V	4.90 V
υ	4 mA	0.45 V	4.55 V

Maximum DC output current per channel	4.0 mA (sink or source)
Output impedance	$50 \Omega \pm 20\%$
Maximum output toggle rate	10 MHz

Connector 1

The following section describes the analog output characteristics accessible through CONNECTOR 1. For more information, including pinout descriptions, refer to **PXIe-7890/7891 Getting Started** content in the NI Product Documentation Center.

Connector type	68-pin VHDCI receptacle

Analog Output

Output type	Single-ended, voltage output
Number of channels	32

Resolution	16 bits		
Update latency			
Uncalibrated			440 nsec
Calibrated			460 nsec
Analog latency 75 nsec			
Maximum update rate 2 MS/s		5	
INL ±0.5 LSE		SB typical, ±2 LSB maximum	
DNL ±0.5 LSE		SB typical, ±1 LSB maximum	
Output range			
Nominal		±10 V	
Typical		±10.13 V	
Minimum		±10.10 V	
Output coupling DC			
Output impedance 0.3 Ω			

Gain drift	5.5 ppm/°C		
Offset drift	30 μV/°C		
Slew rate	20 V/µs		
Noise (DC to 612 kHz)	70 μVrms	70 μVrms	
Current drive	±15 mA		
Protection	Short circuit to ground		
Crosstalk @100 kHz	-85 dB		
Overvoltage protection			
Powered on		±15 V	
Powered off		±10 V	
Power-on output state	0 V		
Power-on glitch	640 mV, decays to 0 V in 860 μs		
Power-off glitch	1.4 V, decays to 0 V in 200 μs		

Glitch during module reset	1.4 V, decays to 0 V in 200 μs

Note Total hardware latency is Update latency + Analog latency.

Table 7. Settling Time

Step Size	Accuracy		
±10 V	±16 LSB	±2 LSB	
	3.0 µs	7.4 μs	

Table 8. Analog Output Calibrated Accuracy

Nominal Range	Condition	Gain Error (Percent of Reading)	Offset Error
101/	Typical (25°C to ±5°C)	±0.016%	±0.11 mV
±10 γ	Maximum (0°C to 55°C)	±0.070%	1.79 mV

Table 9. Analog Output Uncalibrated Accuracy

Nominal Range	Condition	Gain Error (Percent of Reading)	Offset Error
10.1/	Typical (25°C to ±5°C)	±0.096%	±2.73 mV
±10 γ	Maximum (0°C to 55°C)	±0.219%	±8.86 mV

Note Uncalibrated accuracy in <u>Table 8. Analog Output Calibrated Accuracy</u> refers to the accuracy achieved when outputting in raw or unscaled modes where the calibration constants stored in the module are not applied to the data. The gain error is relative to the typical output range of ±10.13 V.

AO Absolute Accuracy Equation

 $AO_AbsoluteAccuracy = (OutputValue) \cdot GainError + OffsetError + INLError \cdot OutputRange \cdot 2/2^{16 bits}$

The following example calculates the absolute full scale calibrated accuracy at 25 \pm 5 °C

on the 10 V range.

 $AO_AbsoluteAccuracy = (10 V) \cdot 0.016 \% + 0.11 mV + \frac{0.5 LSB \cdot (10.13 V) \cdot 2}{2^{16} bits} = 1.865 mV$

Connector 2

The following section describes the analog input characteristics accessible through CONNECTOR 2. For more information, including pinout descriptions, refer to **PXIe-7890/7891 Getting Started** content in the NI Product Documentation Center.

Connector type	69 pin VHDCI recontacle
connector type	

Analog Input

Number of channels	16		
Input mode	Differential		
Type of ADC	Successive approximation register (SAR)		
Resolution	16 bits		
Input ranges	±20 V, ±10 V, ±5 V	V, ±2 V, ±1 V	
Conversion latency			
Uncalibrated		480 nsec	

Calibrated		480 nsec			
Analog latency			-		
Range ±20 V			415 n	isec	
Ranges ±10 V±5 V±2 V			170 r	isec	
Range ±1 V			200 r	isec	
Maximum rate (per channel)	2 MS/s				
Input impedance					
Powered on					-
Range ±20 V					1 ΜΩ
Range ±10 V, ±5 V, ±2 V, ±1 V					>1 GΩ
Powered off/overload				3.8	kΩ
Input coupling sampling	DC				
Input bias current	±5 nA				
Input offset current	±5 nA				

INL	±6 LSB typical, ±12.7 LSB maximum			
DNL	±0.4 LSB typical, ±1 LSB max	±0.4 LSB typical, ±1 LSB maximum		
CMRR, DC to 60 Hz				
Range ±20 V			-48 dB	
Ranges ±10 V, ±5 V, ±2 V			-80 dB	
Bandwidth				
Small signal				
Range ±20 V		900 k	(Hz	
Ranges ±10 V, ±5 V, ±2 V		1600	kHz	
Range ±1 V		1400	kHz	
Large signal				
Ranges ±20 V, ±10 V		740) kHz	
Ranges ±5 V, ±2 V, ±1 V		970) kHz	
Crosstalk (100 kHz) into 50 Ω	-70 dB			
Overvoltage protection				

Powered on	±42 V ²
Powered off	±30 V

Note Total hardware latency is Conversion latency + Analog latency.

Specification	Nominal Range					
Specification	±20 V	±10 V	±5 V	±2 V	±1 V	
Input noise (μVrms)	1600	670	340	140	80	
Gain drift (ppm/°C)	22.6	16.7				
Offset drift (μ V/ $^{\circ}$ C)	64.0	29.2	14.9	6.5	3.8	
Typical input range, AI+ to AI- (V)	±20.62	±10.22	±5.11	±2.04	±1.02	
Minimum input range, AI+ to AI- (V)	±20.38	±10.16	±5.08	±2.03	±1.01	
Maximum Working Voltage (V) (Signal + Common Mode to Ground)	±22	±13	±10.5	±9.0	±8.5	

Table 10. Analog Input Characteristics by Range

Table 11. Analog Input Calibrated Accuracy

Nominal Range	Condition	Gain Error (Percent of Reading)	Offset Error
120.1/	Typical (25°C ± 5°C)	±0.038%	±1.44 mV
±20 V	Maximum (0°C to 55°C)	±0.278%	±5.94 mV
10.1	Typical (25°C ± 5°C)	±0.032%	±0.71 mV
±10 V	Maximum (0°C to 55°C)	±0.215%	±2.04 mV
±5 V	Typical (25°C ± 5°C)	±0.032%	±0.36 mV

2. Only valid for fault on +/- input for 8 AI channels maximum. Degrades to +/-30 V for all 16 channels fault.

Nominal Range	Condition	Gain Error (Percent of Reading)	Offset Error
	Maximum (0°C to 55°C)	±0.215%	±1.05 mV
121/	Typical (25°C ± 5°C)	±0.032%	±0.15 mV
±2 V	Maximum (0°C to 55°C)	±0.215%	±0.47 mV
111/	Typical (25°C ± 5°C)	±0.032%	±0.08 mV
±1 V	Maximum (0°C to 55°C)	±0.215%	±0.27 mV

Table 12. Analog Input Uncalibrated Accuracy

Nominal Range	Condition	Gain Error (Percent of Reading)	Offset Error
120.1/	Typical (25°C ± 5°C)	±0.143%	±3.10 mV
±20 V	Maximum (0°C to 55°C)	±0.808%	±22.80 mV
10.1	Typical (25°C ± 5°C)	±0.139%	±0.98 mV
±10 V	Maximum (0°C to 55°C)	±0.536%	±6.89 mV
	Typical (25°C ± 5°C)	±0.142%	±0.54 mV
τo ν	Maximum (0°C to 55°C)	±0.546%	±3.67 mV
12.1/	Typical (25°C ± 5°C)	±0.142%	±0.28 mV
±2 V	Maximum (0°C to 55°C)	±0.546%	±1.74 mV
+1.1/	Typical (25°C ± 5°C)	±0.142%	±0.19 mV
τι V	Maximum (0°C to 55°C)	±0.546%	±1.09 mV

Note Uncalibrated accuracy in <u>Table 12. Analog Input Uncalibrated Accuracy</u> refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data. The gain error is relative to the typical input range from <u>Table 10.</u> <u>Analog Input Characteristics by Range</u>. For example, on the ±10 V nominal range, the gain error is relative to a full-scale value of ±10.22 V.

AI Absolute Accuracy Equation

 $AI_AbsoluteAccuracy = (Reading) \cdot GainError + OffsetError + INLError \cdot InputRange \cdot 2/2^{16 bits} + Noise \cdot CoverageFacrtor / <math>\sqrt{Number_of_reading}$

The following example calculates the absolute full scale calibrated accuracy at 25 ± 5 °C on the 20 V range with 10,000 readings and 3 δ coverage factor.

 $AI_AbsoluteAccuracy = \left(20 \ V\right) \cdot 0.038 \ \% \ + 1.44 \ mV \ + \ \frac{6 \ LSB \cdot (20.62 \ V) \cdot 2}{2^{16} \ bits} \ + \ \frac{(1600 \ \mu V) \cdot 3}{\sqrt{10, 000}} = \ 12.864 \ mV$

Connector 3

The following sections describe the low-latency analog output characteristics accessible through CONNECTOR 3. For more information, including pinout descriptions, refer to *PXIe-7890/7891 Getting Started* content in the NI Product Documentation Center.

Connector type	68-pin VHDCI receptacle

Low-Latency Analog Output

Output type	Single-ended, voltage output
Number of channels	32
Resolution	16 bits
Output range	±10 V, ±0.5 V ³
Update latency	
Uncalibrated	148 nsec

3. The PXIe-7891 supports 0.5 V range only on Ch<0..7> and Ch<16..23>.

Calibrated		168 nsec
Analog latency	50 nsec	
Maximum update rate	4 MS/s	
INL	±4 LSB maximum	
DNL	±1 LSB maximum	
Output coupling	DC	
Output impedence	50 Ω	
Slew rate	320 V/μs	
Current drive	±100 mA	
Crosstalk @100 kHz	-78 dB	
Protection	Short circuit to ground	
Overvoltage protection		
Powered on		±32 V ⁴

4. AO channel will shut down at fault voltage more than ± 5 V from configured AO output.

Powered off			±	=20 V
Power on state 0 V		0 V	V	
Power on glitch				
Dual range channel	1.3 V, decays to 0 V in 400 μs		n 400 μs	
Single range channel	0.4 V, decays to 0 V in 80 ms		n 80 ms	
Power off glitch				
10 V range channels	4.6 V, decays to 0		Vi	in 4 μs
0.5 V range channels	0.25 V, decays to 0 V in 4 μs		/ in 4 μs	
Settling time at Full Scale to 16 LSB		1.2 µs		

Note Total hardware latency is Update latency + Analog latency.

Table 13. Low-Latency Analog Output Characteristics by Range

Cassification	Nominal Range			
Specification	±10 V	±0.5 V		
Output Noise (μVrms) – DC to 612 kHz	78	16		
Gain Drift (ppm/°C)	13	78		
Offset Drift (μV/°C)	260	13		
Typical Output Range (V)	±10.32	±0.51		
Minimum Output Range (V)	±10.15	±0.50		

Information in <u>Table 14. Low-Latency Analog Output Calibrated Accuracy</u> and <u>Table 15.</u> <u>Low-Latency Analog Output Uncalibrated Accuracy</u> is applicable only for high impedance loads (> 1 Mohm), in which the load current is negligible due to the 50 ohm source resistance.

Nominal Range	Condition	Gain Error (Percent of Reading)	Offset Error
±10 V	Typical (25°C to ±5°C)	±0.028%	±2.67 mV
	Maximum (0°C to 55°C)	±0.162%	±19.94 mV
±0.5 V	Typical (25°C to ±5°C)	±0.099%	±0.13 mV
	Maximum (0°C to 55°C)	±0.852%	±1.03 mV

Table 14. Low-Latency Analog Output Calibrated Accuracy

Table 15. Low-Latency Analog Output Uncalibrated Accuracy

Nominal Range	Condition	Gain Error (Percent of Reading)	Offset Error
±10 V	Typical (25°C to ±5°C)	±0.256%	±24.42 mV
	Maximum (0°C to 55°C)	±0.828%	±81.65 mV
±0.5 V	Typical (25°C to ±5°C)	±1.164%	±1.22 mV
	Maximum (0°C to 55°C)	±4.319%	±4.21 mV

Note Uncalibrated accuracy refers to the accuracy achieved when outputting in raw or unscaled modes where the calibration constants stored in the module are not applied to the data. The gain error is relative to the typical output from <u>Table 13. Low-Latency Analog Output Characteristics by</u> <u>Range</u>. For example, on the ±10 V nominal range, the gain error is relative to a full-scale value of ±10.32 V.

Low Latency AO Absolute Accuracy Equation

$$LLAO_AbsoluteAccuracy = \left(OutputValue\right) \cdot GainError + OffsetError + INLError \cdot OutputRange \cdot 2/2^{16 \ bits}$$

The following example calculates the absolute full scale calibrated accuracy at 25 \pm 5 °C on the 10 V range.

$$LLAO_AbsoluteAccuracy = (10 V) \cdot 0.028 \% + 2.67 mV + \frac{4 LSB \cdot (10.32 V) \cdot 2}{2^{16 bits}} = 6.730 mV$$

Calibration

Interval	2 years
----------	---------

Reconfigurable FPGA

The PXIe-7891 provides a KU060 FPGA with characteristics shown in the following table.

Table 16. KU060 FPGA Characteristics

Characteristics	KU060
LUTs	331,680
DSP48 slices (25 × 18 multiplier)	2,760
Embedded Block RAM	38.0 Mb
Timebase reference sources	PXI Express 100 MHz (PXIe_CLK100)
Data transfers	DMA, interrupts, programmed I/O, multi-gigabit transceivers
Number of DMA channels	60

Note The list above depicts the total number of FPGA resources available on the part. The number of resources available to the user is slightly lower, as some FPGA resources are consumed by board-interfacing IP for PCI Express, device configuration, and various board I/O. For more information, contact NI Support.

Onboard DRAM

Memory size	4 GB (2 banks of 2 GB)
DRAM clock rate	1064 MHz
Physical bus width	32 bit
LabVIEW FPGA DRAM clock rate	267 MHz
LabVIEW FPGA DRAM bus width	256 bit per bank
Maximum theoretical data rate	17 GB/s (8.5 GB/s per bank)

Bus Interface

Form factor

PCI Express Gen-3 x8

Maximum Power Requirements

Note Power requirements are dependent on the contents of the LabVIEW FPGA VI used in your application.

Maximum Current		
+3.3 Vdc	2.6 A	

+12.0 Vdc	7.3 A
Maximum total power	96.2 W

Power consumption is from both PXI Express backplane power connectors.

Physical Characteristics

Dimensions (not including connectors)	4.0 cm × 13.0 cm × 21.6 cm (0.8 in. × 5.1 in. × 8.5 in.)
Weight	778 g (27.4 oz)

Environmental Characteristics

Temperature		
Operating		0 °C to 55 °C
Storage		-40 °C to 71 °C
Humidity		
Operating	10% to 90%, noncondensing	
Storage	5% to 95%, noncondensing	
Pollution Degree	2	

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)	
Shock and Vibration		
Operating vibration		5 Hz to 500 Hz, 0.3 g RMS
Non-operating vibration		5 Hz to 500 Hz, 2.4 g RMS
Operating shock		30 g, half-sine, 11 ms pulse