USB-7855 Specifications

Contents

NI USB-7855R Specifications	3

NI USB-7855R Specifications

The following specifications are typical at 25 °C unless otherwise noted.

Analog Input

Number of channels	8	
Input modes	DIFF, NRSE, RSE (software-selectable; selection applies to all channels)	
Type of ADC	Successive approximation reg	gister (SAR)
Resolution	16 bits	
Conversion time	1 μs	
Maximum sampling rate	1 MS/s (per channel)	
Input impedance		
Powered on		1.25 GΩ 2 pF
Powered off/overload 4.0 k		4.0 kΩ minimum
Input signal range	±1 V, ±2 V, ±5 V, ±10 V (software-selectable)	

Input bias current	±5 nA	
Input offset current	±5 nA	
Input coupling	DC	
Overvoltage protection		
Powered on		±42 V maximum
Powered off		±35 V maximum

Table 1. Al Operating Voltage Ranges Over Temperature

	Me	easurement Voltage, A	Maximum Working	
Range	Minimum (V) ^[1]	Typical (V)	Maximum (V)	Voltage (Signal + Common Mode)
±10 V	±10.37	±10.5	±10.63	±12 V of ground
±5 V	±5.18	± 5.25	±5.32	±10 V of ground
±2 V	±2.07	±2.1	±2.13	±8.5 V of ground
±1 V	±1.03	±1.05	±1.06	±8 V of ground

AI Absolute Accuracy

Absolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = $10 \, ^{\circ}$ C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 10,000
- CoverageFactor = 3σ

Table 2. AI Absolute Accuracy (Calibrated)

		F	Range	
Specifications	±10 V	±5 V	±2 V	±1 V
Residual Gain Error (ppm of Reading)	104.4	105.9	110.6	118.4
Gain Tempco (ppm/°C)	20	20	20	20
Reference Tempco (ppm/°C)	4	4	4	4
Residual Offset Error (ppm of Range)	16.4	16.4	16.4	16.4
Offset Tempco (ppm of Range/°C)	4.18	4.17	4.41	4.63
INL Error (ppm of range)	42.52	46.52	46.52	50.52
Random Noise, σ (μVrms)	263	156	90	74
Absolute Accuracy at Full Scale (μV)	2,283	1,170	479	252

Table 3. Al Absolute Accuracy (Uncalibrated)

Considirations		Rar	nge	
Specifications	±10 V	±5 V	±2 V	±1 V
Residual Gain Error (ppm of	2,921	3,021	3,021	3,021

Cuacifications		Rai	nge	
Specifications	±10 V	±5 V	±2 V	±1 V
Reading)				
Gain Tempco (ppm/°C)	20	20	20	20
Reference Tempco (ppm/°C)	4	4	4	4
Residual Offset Error (ppm of Range)	661	671	700	631
Offset Tempco (ppm of Range/°C)	4.18	4.17	4.41	4.63
INL Error (ppm of range)	42.52	46.52	46.52	50.52
Random Noise, σ (μVrms)	263	156	90	74
Absolute Accuracy at Full Scale (μV)	36,895	19,018	7,667	3,769

Calculating Absolute Accuracy

AbsoluteAccuracy = Reading × (GainError) + Range × (OffsetError) + NoiseUncertainty $\begin{aligned} &\text{GainError} = \text{ResidualGainError} + \text{GainTempco} \times (\text{TempChangeFromLastInternalCal}) + \text{ReferenceTempco} \times (\text{TempChangeFromLastExternalCal}) \\ &\text{OffsetError} = \text{ResidualOffsetError} + \text{OffsetTempco} \times (\text{TempChangeFromLastInternalCal}) + \text{INL_Error} \\ &\text{NoiseUncertainty} = \frac{\text{RandomNoise} \times \text{CoverageFactor}}{\sqrt{\text{number_of_readings}}} \end{aligned}$

Refer to the following equation for an example of calculating absolute accuracy for a 10 V reading.

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 10,000
- CoverageFactor = 3σ

GainError = $104.4 \text{ ppm} + 20 \text{ ppm} \times 1 + 4 \text{ ppm} \times 10$

GainError = 164.4 ppm

OffsetError = 16.4 ppm + 4.18 ppm 1 + 42.52 ppm

OffsetError = 63.1 ppm

NoiseUncertainty = $\frac{263 \,\mu\text{V} \times 3}{\sqrt{10,000}}$

NoiseUncertainty = $7.89 \,\mu\text{V}$

AbsoluteAccuracy = 10 V × (GainError) + 10 V × (OffsetError) + NoiseUncertainty

AbsoluteAccuracy = 2,283 μV

DC Transfer Characteristics

INL	Refer to the AI Accuracy Table
DNL	±0.4 LSB typ, ±0.9 LSB max
No missing codes	16 bits guaranteed
CMRR, DC to 60 Hz	-100 dB

Dynamic Characteristics

Bandwidth	
Small signal	1 MHz
Large signal	500 kHz

Table 4. Settling Time

Pango (V)	Step Size (V)	Accuracy		
Range (V)		±16 LSB	±4 LSB	±2 LSB
	±20.0	1.50 μs	4.00 μs	7.00 μs
±10	±2.0	0.50 μs	0.50 μs	1.00 μs
	±0.2	0.50 μs	0.50 μs	0.50 μs
±5	±10	1.50 μs	3.50 μs	7.50 μs
	±1	0.50 μs	0.50 μs	1.00 μs
	±0.1	0.50 μs	0.50 μs	0.50 μs
	±4	1.00 μs	3.50 μs	8.00 μs
±2	±0.4	0.50 μs	0.50 μs	1.00 μs
	±0.04	0.50 μs	0.50 μs	0.50 μs
	±2	1.00 μs	3.50 μs	12.00 μs
±1	±0.2	0.50 μs	0.50 μs	1.50 μs
	±0.02	0.50 μs	0.50 μs	0.50 μs

Crosstalk	-80 dB, DC to 100 kHz

Analog Output

Output type	Single-ended, voltage output
Number of channels	8
Resolution	16 bits

Update time	1.0 μs
Maximum update rate	1 MS/s
Type of DAC	Enhanced R-2R
Range	±10 V
Output coupling	DC
Output impedance	0.5 Ω
Current drive	±2.5 mA
Protection	Short circuit to ground
Overvoltage protection	
Powered on	±15 V maximum
Powered off	±10 V maximum
Power-on state	User-configurable
Power-on glitch	-1 V for 1 μs

Table 5. AO Operating Voltage Ranges for Over Temperature

	Measurement Voltage, AO+ to AO GND		
Range	Minimum (V) ^[2]	Typical (V)	Maximum (V)
±10 V	±10.1	±10.16	±10.22

AO Absolute Accuracy

Absolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.

Absolute accuracy at full scale on the analog output channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C

Table 6. AO Absolute Accuracy (Calibrated)

Specifications	±10 V Range
Residual Gain Error (ppm of Reading)	87.3
Gain Tempco (ppm/°C)	12.6
Reference Tempco (ppm/°C)	4
Residual Offset Error (ppm of Range)	41.1
Offset Tempco (ppm of Range/°C)	7.8
INL Error (ppm of range)	61
Absolute Accuracy at Full Scale (μV)	2,498

Table 7. AO Absolute Accuracy (Uncalibrated)

Specifications	±10 V Range
Residual Gain Error (ppm of Reading)	2,968.6
Gain Tempco (ppm/°C)	12.6

Specifications	±10 V Range	
Reference Tempco (ppm/°C)	4	
Residual Offset Error (ppm of Range)	1,004.1	
Offset Tempco (ppm of Range/°C)	7.8	
INL Error (ppm of range)	61	
Absolute Accuracy at Full Scale (μV)	40,941	

Calculating Absolute Accuracy

AbsoluteAccuracy = OutputValue × (GainError) + Range × (OffsetError)

GainError = ResidualGainError + GainTempco × (TempChangeFromLastInternalCal) + ReferenceTempco × (TempChangeFromLastExternalCal) OffsetError = ResidualGainError + AOOffsetTempco × (TempChangeFromLastInternalCal) + INL_Error

Refer to the following equation for an example of calculating absolute accuracy for a 10 V reading.

Absolute accuracy at full scale on the analog output channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C

GainError = $87.3 \text{ ppm} + 12.6 \text{ ppm} \times 1 + 4 \text{ ppm} \times 10$

GainError = 139.9 ppm

OffsetError = $41.1 \text{ ppm} + 7.8 \text{ ppm} \times 1 + 61 \text{ ppm}$

OffsetError = 109.9 ppm

AbsoluteAccuracy = 10 V × (GainError) + 10 V × (OffsetError)

AbsoluteAccuracy = 2,498 μV

DC Transfer Characteristics

INL	Refer to the AO Accuracy Table
DNL	±0.5 LSB typical, ±1 LSB maximum

Monotonicity	16 bits, guaranteed
--------------	---------------------

Dynamic Characteristics

Table 8. Settling Time

Ston Sino		Accuracy	
Step Size	±16 LSB	±4 LSB	±2 LSB
±20.0 V	5.3 μs	6.5 μs	7.8 µs
±2.0	3.2 μs	3.9 μs	4.4 μs
±0.2	1.8 μs	2.8 μs	3.8 µs

Slew rate	10 V/μs
Noise	250 μVrms, DC to 1 MHz
Glitch energy at midscale transition	±10 mV for 3 μs

5V Output

Output voltage	4.75 V to 5.1 V
Output current	0.5 A maximum
Overvoltage protection	±30 V
Overcurrent protection	650 mA

Digital I/O

Table 9. Channel Frequency

Connector	Number of Channels	Maximum Frequency
Connector 0	32	80 MHz
Connector 1	16	10 MHz

Compatibility	LVTTL, LVCMOS
Logic family	User-selectable
Default software setting	3.3 V

Table 10. Digital Input Logic Levels

Logic Family	Input Low Voltage	Input High Voltage
	V _{IL} (Maximum)	V _{IH} (Minimum)
1.2 V	0.42 V	0.84 V
1.5 V	0.51 V	1.01 V
1.8 V	0.61 V	1.21 V
2.5 V	0.70 V	1.60 V
3.3 V	0.80 V	2.00 V

Maximum input	3.6 V
---------------	-------

Table 11. Digital Output Logic Levels

Lasia Family	Current	Output Low Voltage		Output High Voltage	
Logic Family		V _{OL} (Maximum)	V _{OH} (Minimum)		
1.2 V	100 μΑ	0.20 V	1.00 V		
1.5 V	100 μΑ	0.20 V	1.25 V		
1.8 V	100 μΑ	0.20 V	1.54 V		
2.5 V	100 μΑ	0.20 V	2.22 V		
3.3 V	100 μΑ,	0.20 V,	3.00 V,		
	4 mA	0.40 V	2.40 V		

Output current		
Source	4.0 mA	
Sink	4.0 mA	
Input leakage current		±15 μA maximum
Input impedance		50 kΩ typical, pull-down
Output impedance		50 Ω
Power-on state		Programmable, by line
Protection		±20 V, single line
Digital I/O voltage switching time		2 ms maximum

Note Refer to *NI RIO Software Help* for more information about switching times.

Reconfigurable FPGA

FPGA type	Kintex-7 70T
Number of flip-flops	82,000
Number of LUTs	41,000
Embedded block RAM	4,860 kbits
Number of DSP48 slices	240
Timebase	40 MHz, 80 MHz, 120 MHz, 160 MHz, or 200 MHz
Timebase accuracy, onboard clock	±100 ppm

Bus Interface

USB compatibility	USB 2.0 Hi-Speed or Full-Speed ^[3]
Data transfers	DMA, interrupts, programmed I/O
Number of DMA channels	3

Power Requirement

Input voltage	9 V to 30 V
Maximum power	20 W
Overvoltage protection	40 V

Caution You must use either the power supply provided in the shipping kit, or another UL Listed ITE power supply marked LPS with the NI USB-7855R.

Physical Characteristics

Note If you need to clean the device, wipe it with a dry, clean towel.

Dimensions	18.5 cm × 17.3 cm × 3.6 cm (7.3 in. × 6.8 in. × 1.4 in.)
Weight	1,000 g (35.27 oz)
I/O connectors	2 × 68-pin VHDCI

Safety Voltages

Connect only voltages that are below these limits.

Channel-to-earth ±1	12 V, Measurement Category I
---------------------	------------------------------

Channel-to-channel	±24 V, Measurement Category I

Caution Do not connect the NI USB-7855R to signals or use for measurements within Measurement Categories II, III, or IV.

Attention Ne connectez pas le NI USB-7855R à des signaux et ne l'utilisez pas pour effectuer des mesures dans les catégories de mesure II, III ou IV.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as **MAINS** voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

CE Compliance (E

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)
- 2014/53/EU; Radio Equipment Directive (RED)
- 2014/34/EU; Potentially Explosive Atmospheres (ATEX)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental

Refer to the manual for the chassis you are using for more information about meeting these specifications.

Operating temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 70 °C
Storage temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 85 °C
Operating humidity (IEC 60068-2-78)	10% RH to 90% RH, noncondensing
Storage humidity (IEC 60068-2-78)	5% RH to 95% RH, noncondensing

Pollution Degree	2
Maximum altitude	2,000 m

Indoor use only.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国RoHS)

• ❷⑤❷ 中国RoHS— NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/ rohs china。 (For information about China RoHS compliance, go to ni.com/ environment/rohs china.)

Calibration

Recommended warm-up time		15 minutes
Calibration interval		1 year
Onboard calibration reference		
DC level ^[4]	5.000 V (±2 mV)	
Temperature coefficient	±4 ppm/°C maximum	
Long-term stability	±25 ppm/1,000 h	

Note Refer to Calibration Certifications at <u>ni.com/calibration</u> to generate a calibration certificate for the NI USB-7855R

Worldwide Support and Services

Visit <u>ni.com/support</u> to find support resources including documentation, downloads, and troubleshooting and application development self-help such as tutorials and examples.

Visit <u>ni.com/services</u> to learn about NI service offerings such as calibration options, repair, and replacement.

Visit <u>ni.com/register</u> to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 N Mopac Expwy, Austin, TX, 78759-3504, USA.