# Wireless Test System Specifications





# Contents

| Wireless Test System Specifications |
|-------------------------------------|
|-------------------------------------|

# Wireless Test System Specifications

These specifications apply to the following Wireless Test System (WTS), NI-MCT001 options.

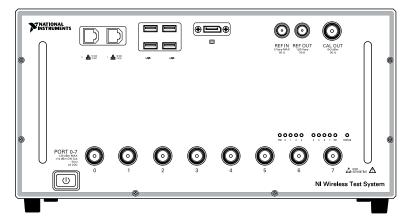
- WTS-01 8-port single channel 200 MHz
- WTS-02 8-port dual channel 200 MHz
- WTS-03 8-port dual channel 200 MHz high accuracy clock
- WTS-04 8-port single channel 200 MHz high accuracy clock
- WTS-05 16-port single channel 200 MHz high accuracy clock

# Definitions

*Warranted* specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

*Characteristics* describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Typical-95* specifications describe the performance met by 95% (≈2σ) of models with a 95% confidence.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.


# Conditions

Warranted specifications are valid under the following conditions unless otherwise noted.

- 30 minutes warm-up time.
- Calibration cycle is maintained.
- Chassis fan speed is set to High.
- The WTS is configured to use the internal Reference Clock source.

**Note** Within the specifications, self-calibration ° C refers to the temperature of the last successful self-calibration of the signal analyzer or signal generator connected to the port in use.

# Pinout



**Note** The previous illustration is not representative of all WTS options. The front panel of your WTS may differ.

#### Table 1. Device Front Panel Icon Definitions

| $\triangle$ | Refer to the user documentation for required<br>maintenance measures to ensure user safety<br>and/or preserve the specified EMC performance.                                                                                                                                             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| È           | The signal pins of this product's input/output<br>ports can be damaged if subjected to ESD. To<br>prevent damage, turn off power to the product<br>before connecting cables and employ industry-<br>standard ESD prevention measures during<br>installation, maintenance, and operation. |

**Notice** Apply external signals only while the WTS is powered on. Applying external signals while the device is powered off may cause damage.

#### Table 2. WTS Front Panel Connectors

| Connector | Use                                          |
|-----------|----------------------------------------------|
| Port <0n> | Full duplex signal analyzer/signal generator |

| Connector      | Use                                                                                                                                                                                                                                           |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | channels.                                                                                                                                                                                                                                     |  |
| REF IN         | Input connector that allows for the system to be locked to an external 10 MHz Reference Clock.                                                                                                                                                |  |
|                | <b>Note</b> Not supported on all models.                                                                                                                                                                                                      |  |
| REF OUT        | Output connector that exports a 10 MHz<br>Reference Clock or the 120 MHz Sample Clock.                                                                                                                                                        |  |
| CALOUT         | Output connector that provides a signal<br>generator local oscillator output signal of a<br>frequency that is specified by setting the<br>generator output frequency. This signal can be<br>used as a calibrated tone for system calibration. |  |
| Ethernet (2)   | Connects the WTS to a PC or network using an Ethernet cable.                                                                                                                                                                                  |  |
| USB (4)        | Connects the WTS to a keyboard and mouse using USB cables.                                                                                                                                                                                    |  |
| Monitor Output | Connects the WTS to a monitor using a DisplayPort cable.                                                                                                                                                                                      |  |

#### Table 3. WTS Front Panel LEDs

| LED    | Indications                                                                                                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TX<0n> | Indicates that the RF chain is configured for output (default).                                                                                                                                       |
| <0n>   | Indicates that signals are being received on the channel(s) that are lit.                                                                                                                             |
| STATUS | Indicates the power status of the<br>WTS<br>Red—Power is connected but does not meet the<br>expected power specifications, which could<br>indicate a problem with the internal power<br>distribution. |

| LED | Indications                                                                  |
|-----|------------------------------------------------------------------------------|
|     | Green—The<br>WTS<br>is powered on.<br>Amber—The<br>WTS<br>is being accessed. |

## Frequency

The following characteristics are common to both signal analyzer and signal generator subsystems.

| Frequency range | 65 MHz to 6 GHz |
|-----------------|-----------------|
|-----------------|-----------------|

Table 4. Bandwidth

| Center Frequency     | Instantaneous Bandwidth (MHz) |
|----------------------|-------------------------------|
| 65 MHz to 109 MHz    | 20                            |
| >109 MHz to <200 MHz | 40                            |
| 200 MHz to 6 GHz     | 200                           |

| Tuning resolution | 888 nHz |
|-------------------|---------|
|-------------------|---------|

## **Frequency Settling Time**

Table 5. Maximum Frequency Settling Time<sup>1</sup>

| Settling Time                            | Maximum Time (ms) |
|------------------------------------------|-------------------|
| ≤1 × 10 <sup>-6</sup> of final frequency | 0.95              |

1. This specification includes only frequency settling and excludes any residual amplitude settling.

| Settling Time                              | Maximum Time (ms) |
|--------------------------------------------|-------------------|
| ≤0.1 × 10 <sup>-6</sup> of final frequency | 1.05              |

#### **Internal Frequency Reference**

| Table 6. | Internal | Frequenc  | y Reference |
|----------|----------|-----------|-------------|
| Tuble 0. | meennat  | ricquerie | y nererence |

| Description                 | TCXO ( WTS -01 or WTS -02)               | OCXO ( WTS -03, WTS -04,<br>or WTS -05)     |
|-----------------------------|------------------------------------------|---------------------------------------------|
| Initial adjustment accuracy | $1 \times 10^{-6}$                       | $\pm 70 \times 10^{-9}$                     |
| Temperature stability       | $\pm 1 \times 10^{-6}$ , maximum         | $\pm 5 \times 10^{-9}$ , maximum            |
| Aging                       | $\pm 1 \times 10^{-6}$ per year, maximum | ±50 × 10 <sup>-9</sup> per year,<br>maximum |
| Accuracy                    | Initial adjustment accuracy ± Aging ±    | Temperature stability                       |

#### Frequency Reference Input (REF IN)

Refer to the <u>REF IN</u> section.

#### Frequency Reference/Sample Clock Output (REF OUT)

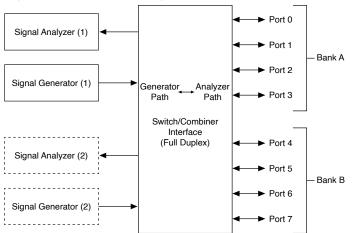
Refer to the <u>REF OUT</u> section.

## **Spectral Purity**

Table 7. Single Sideband Phase Noise

| Frequency       | Single Sideband Phase Noise (dBc/Hz), 20 kHz<br>Offset |
|-----------------|--------------------------------------------------------|
| <3 GHz          | -99                                                    |
| 3 GHz to 4 GHz  | -93                                                    |
| >4 GHz to 6 GHz | -93                                                    |





Figure 1. Measured Phase Noise at 900 MHz, 2.4 GHz, and 5.8 GHz

## **Channel and Port Configuration**

You can configure all ports to perform measurement analysis. The software routes the port to a signal analyzer when in use and terminates the port when not in use. When not in use, the RF port is internally terminated to improve channel-to-channel isolation.

You can configure signal generation for broadcast on up to four channels simultaneously. RF ports <0..3> and <4..7> support broadcast generation. The integrated signal generator(s) can drive each group of four channels, as shown in the following figure.





Refer to the *Wireless Test System Instrument Software User Guide*, available at <u>ni.com/manuals</u>, for a block diagram that illustrates the functionality of the WTS .

## **Signal Analyzer**

#### **Signal Analyzer Ports**

| Number of signal analyzer channel ports | 8 or 16 |  |
|-----------------------------------------|---------|--|
|                                         |         |  |

Refer to the <u>Port (<0..n>)</u> section for additional port specifications.

#### Amplitude Range

| Amplitude range                     | Average noise level to +30 dBm (CW RMS) |
|-------------------------------------|-----------------------------------------|
| RF reference level range/resolution | ≥60 dB in 1 dB nominal steps            |

#### Amplitude Settling Time

| <0.1 dB of final value <sup>2</sup>                   | 125 μs, typical |
|-------------------------------------------------------|-----------------|
| <0.5 dB of final value <sup>3</sup> , with LO retuned | 300 µs          |
| Port settling time <sup>4</sup>                       | 65 μs, nominal  |

- 2. Constant LO frequency, constant RF input signal, varying input reference level.
- 3. LO tuning across harmonic filter bands, constant RF input signal, varying input reference level.
- 4. The settling that occurs when switching from one active port to another active port.

## Absolute Amplitude Accuracy

Table 8. Signal Analyzer Absolute Amplitude Accuracy

| Input Frequency                           | Absolute Amplitude Accuracy (±dB),<br>Self-Calibration °C ± 1 °C |
|-------------------------------------------|------------------------------------------------------------------|
| 65 MHz to <109 MHz                        | _                                                                |
| ≥109 MHz to <1.6 GHz                      | ±0.55, typical                                                   |
| ≥1.6 GHz to <4 GHz                        | 0.45, typical                                                    |
| ≥4 GHz to <5 GHz                          | 0.65, typical                                                    |
| ≥5 GHz to 6 GHz                           | 0.60, typical                                                    |
| Conditions: maximum power level is set fr | rom -30 dBm to +30 dBm. For device temperature outside           |

Conditions: maximum power level is set from -30 dBm to +30 dBm. For device temperature outside this range, there is an expected temperature coefficient of -0.036 dB/°C for frequencies <4 GHz and -0.055 dB/°C for frequencies ≥4 GHz.

#### **Frequency Response**

Table 9. Signal Analyzer Frequency Response (dB) (Amplitude, Equalized)

| <b>RF Signal Analyzer Frequency</b> | Bandwidth (MHz) | Self-Calibration °C $\pm$ 5 °C |
|-------------------------------------|-----------------|--------------------------------|
| 200 MHz to <2.2 GHz                 | 80              | 0.6                            |
|                                     | 200             | 1.2                            |
| 2.2 GHz to 6 GHz                    | 80              | 0.5                            |
|                                     | 200             | 0.9                            |

Conditions: maximum power level -30 dBm to +30 dBm. This specification is valid only when the system is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

Frequency response represents the relative flatness within a specified instantaneous bandwidth. Frequency response specifications are valid within any given frequency range and not the LO frequency itself.

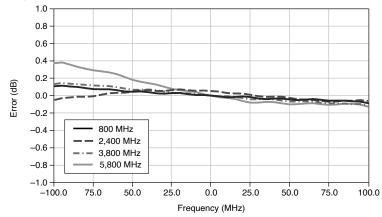



Figure 3. Measured 200 MHz Frequency Response, 0 dBm Reference Level, Bank A, Normalized



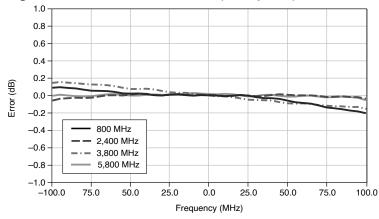
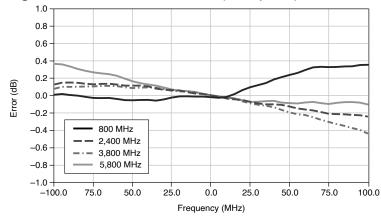




Figure 5. Measured 200 MHz Frequency Response, -30 dBm Reference Level, Bank A, Normalized



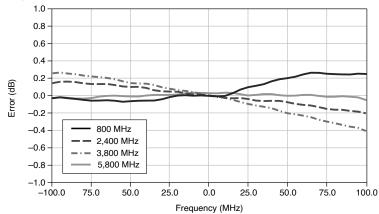



Figure 6. Measured 200 MHz Frequency Response, -30 dBm Reference Level, Bank B, Normalized

## **Average Noise Density**

Table 10. Average Noise Density

| Contox Exercise ou  | Average Noise Level (dBm/Hz) |                       |
|---------------------|------------------------------|-----------------------|
| Center Frequency    | -30 dBm Reference Level      | 0 dBm Reference Level |
| 80 MHz to <2.2 GHz  | -144                         | -135                  |
| 2.2 GHz to <4.2 GHz | -141                         | -134                  |
| 4.2 GHz to 6 GHz    | -136                         | -131                  |

Conditions: input terminated with a 50 Ω load; 10 averages; RMS average noise level normalized to a 1 Hz noise bandwidth; noise measured in 1 MHz centered 7.75 MHz from LO frequency.

#### **Spurious Responses**

#### **Nonharmonic Spurs**

Table 11. Nonharmonic Spurs (dBc)

| Frequency       | <100 kHz Offset | ≥100 kHz Offset | >1 MHz Offset |
|-----------------|-----------------|-----------------|---------------|
| 65 MHz to 3 GHz | <-55, typical   | <-60            | <-75          |
| >3 GHz to 6 GHz | <-55, typical   | <-55            | <-70          |

Conditions: Reference level ≥-30 dBm. Measured with a single tone, -1 dBr, where dBr is referenced to the configured RF reference level.

## **LO Residual Power**

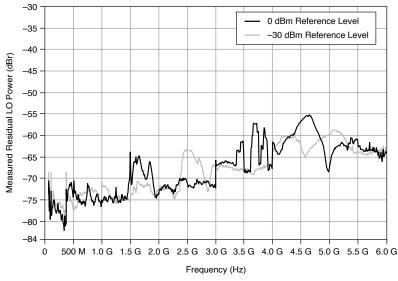

| Contor Fraguency  | LO Residual Power (dBr <sup>5</sup> ) |                                |
|-------------------|---------------------------------------|--------------------------------|
| Center Frequency  | Self-Calibration °C ± 1 °C            | Self-Calibration °C $\pm$ 5 °C |
| ≤109 MHz          | -70, typical                          | -67, typical                   |
| >109 MHz to 2 GHz | -65, typical                          | -61, typical                   |
| >2 GHz to 3 GHz   | -60, typical                          | -58, typical                   |
| >3 GHz to 6 GHz   | -56, typical                          | -48, typical                   |

Table 12. Signal Analyzer LO Residual Power

Conditions: reference levels -30 dBm to +30 dBm; measured at ADC.

For optimal performance, NI recommends running self-calibration when the system temperature drifts ±5 °C from the temperature at the last self-calibration. For temperature changes >±5 °C from self-calibration, LO residual power is -35 dBr.

#### Figure 7. Signal Analyzer LO Residual Power<sup>6</sup>, Typical



- 5. dBr is relative to the full scale of the configured RF reference level.
- 6. Conditions: Signal analyzer frequency range 109 MHz to 6 GHz. Measurement performed after self-calibration.

## **Residual Sideband Image**

| Center Frequency Bandwidth (MHz) | Dendusidth (MII-)              | Residual Sideband Image (dBc)                       |              |
|----------------------------------|--------------------------------|-----------------------------------------------------|--------------|
|                                  | Self-Calibration °C $\pm$ 1 °C | Self-Calibration $^\circ\text{C}\pm5^\circ\text{C}$ |              |
| ≤109 MHz                         | 20                             | -60, typical                                        | -50, typical |
| >109 MHz to <200 MHz             | 80                             | -50, typical                                        | -45, typical |
| ≥200 MHz to 500 MHz              | 200                            | -50, typical                                        | -45, typical |
| >500 MHz to 3 GHz                | 200                            | -75, typical                                        | -67, typical |
| >3 GHz to 6 GHz                  | 200                            | -70, typical                                        | -65, typical |

Table 13. Signal Analyzer Residual Sideband Image

Conditions: reference levels -30 dBm to +30 dBm.

Frequency response specifications are valid within any given frequency range, not the LO frequency itself.

This specification describes the maximum residual sideband image within a 200 MHz bandwidth at a given RF center frequency. Bandwidth is restricted to 20 MHz for LO frequencies ≤ 109 MHz and restricted to 80 MHz for frequencies > 109 MHz to 200 MHz.

This specification is valid only when the system is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the WTS temperature drifts ± 5 °C from the temperature at the last self-calibration. For temperature changes >± 5 °C from self-calibration, residual image suppression is -40 dBc.

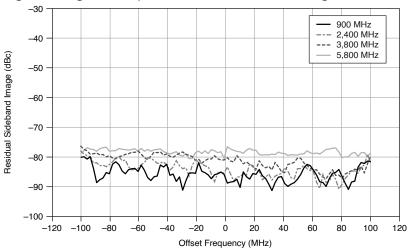
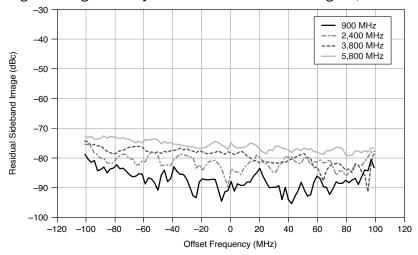




Figure 8. Signal Analyzer Residual Sideband Image<sup>7[7]</sup>, 0 dBm Reference Level, Typical

Figure 9. Signal Analyzer Residual Sideband Image<sup>[7]</sup>, -30 dBm Reference Level, Typical



# **Signal Generator**

#### **Signal Generator Ports**

Signal generator ports are designed to broadcast. Any ports that are not configured for output have a significantly attenuated output.

| Number of signal generator channel ports | 8 or 16 |
|------------------------------------------|---------|
|------------------------------------------|---------|

Refer to the <u>Port (<0..n>)</u> section for additional port specifications.

7. Measurement performed after self-calibration.

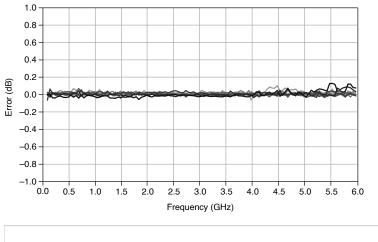
#### **Power Range**

| CW output power range <sup>8</sup> , 65 MHz to 6 GHz frequency | Noise floor to +6 dBm, average power |
|----------------------------------------------------------------|--------------------------------------|
|                                                                |                                      |

#### **Amplitude Settling Time**

| 0.1 dB of final value <sup>9</sup>                    | 50 µs  |  |
|-------------------------------------------------------|--------|--|
| 0.5 dB of final value <sup>10</sup> , with LO retuned | 300 µs |  |

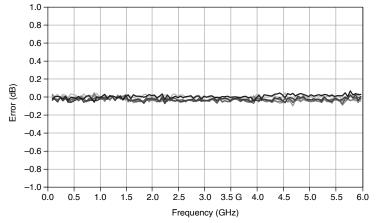
#### **Output Power Level Accuracy**

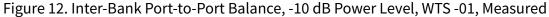

Table 14. Signal Generator Absolute Amplitude Accuracy

| Input Frequency      | Signal Generator Absolute Amplitude Accuracy<br>(±dB), Self-Calibration°C ± 1 °C |
|----------------------|----------------------------------------------------------------------------------|
| 65 MHz to <109 MHz   | 0.35, typical                                                                    |
| ≥109 MHz to <1.6 GHz | 0.31, typical                                                                    |
| ≥1.6 GHz to 4 GHz    | 0.40, typical                                                                    |
| ≥4 GHz to 5 GHz      | 0.50, typical                                                                    |
| ≥5 GHz to <5.9 GHz   | 0.35, typical                                                                    |
| ≥5.9 GHz to 6 GHz    | 0.35, typical                                                                    |

Conditions: signal generator power level set from 0 dBm to -70 dBm.

For device temperature outside this range, there is an expected temperature coefficient of -0.036 dB/°C for frequencies <4 GHz, and -0.055 dB/°C for frequencies  $\geq$ 4 GHz.


- 8. Higher output is uncalibrated and may be compressed.
- 9. Constant LO frequency, varying RF output power range. Power levels ≤ 0 dBm. 175 µs for power levels > 0 dBm.
- 10. LO tuning across harmonic filter bands.



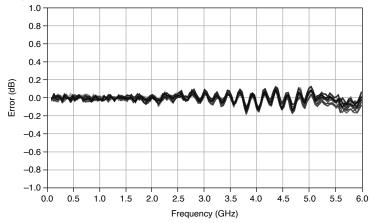


#### Figure 10. Relative Power Accuracy, -45 dBm to -5 dBm, 5 dB Steps, Measured



Figure 11. Intra-Bank Port-to-Port Balance, -10 dB Power Level, Measured







## **Frequency Response**

| Output Frequency    | Bandwidth (MHz) | Self-Calibration °C ± 5 °C |
|---------------------|-----------------|----------------------------|
| 200 MUz to <2 2 CUz | 80              | 0.75                       |
| 200 MHz to <2.2 GHz | 200             | 1.30                       |
|                     | 80              | 1.30                       |
| 2.2 GHz to 6 GHz    | 200             | 2.20                       |

Table 15. Signal Generator Frequency Response (dB) (Amplitude, Equalized)

Conditions: Signal generator power level 0 dBm to -30 dBm. This specification is valid only when the system is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

Frequency response represents the relative flatness within a specified instantaneous bandwidth. Frequency response specifications are valid within any given frequency range and not the LO frequency itself.

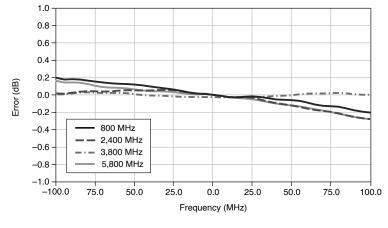



Figure 13. 200 MHz Frequency Response, 0 dBm Reference Level, Bank A, Normalized, Measured

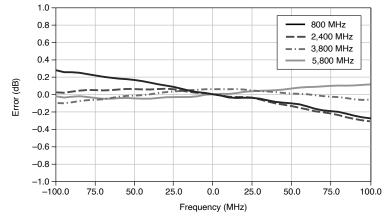



Figure 14. 200 MHz Frequency Response, 0 dBm Reference Level, Bank B, Normalized, Measured



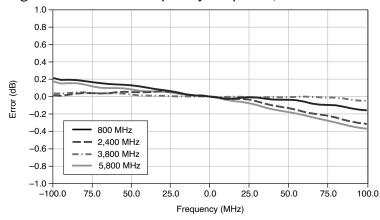
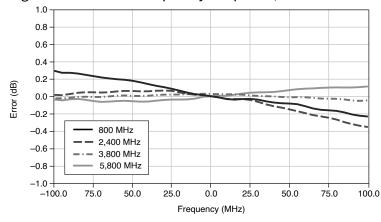




Figure 16. 200 MHz Frequency Response, -20 dBm Reference Level, Bank B, Normalized, Measured



## **Output Noise Density**

Table 16. Average Output Noise Level

|                                                                                               | Average Output No                         | oise Level (dBm/Hz)                     |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
| Center Frequency                                                                              | Signal Generator Power Level<br>(-10 dBm) | Signal Generator Power Level<br>(0 dBm) |
| 250 MHz to <2.2 GHz                                                                           | -147                                      | -143                                    |
| 2.2 GHz to 6 GHz -148 -139                                                                    |                                           |                                         |
| Conditions: averages: 10; baseband signal attenuation: -40 dB; output tone frequency 3.75 MHz |                                           |                                         |

from LO frequency; noise measured in 1 MHz around 7.75 MHz from LO frequency.

#### **Spurious Responses**

#### Harmonics

Table 17. Second Harmonic Level (dBc)

| Fundamental Frequency | Signal Generator Power Level (-10 dBM) |
|-----------------------|----------------------------------------|
| 80 MHz to <2.2 GHz    | -40                                    |
| 2.2 GHz to 6 GHz      | -28                                    |

#### Nonharmonic Spurs

Table 18. Nonharmonic Spurs (dBc)

| <b>F</b> ile <b>a</b> the <b>a</b> th                                              |                 | Nonharmonic Spurs (dBc) |               |  |
|------------------------------------------------------------------------------------|-----------------|-------------------------|---------------|--|
| Frequency                                                                          | <100 kHz Offset | ≥100 kHz Offset         | >1 MHz Offset |  |
| 65 MHz to 3 GHz                                                                    | <-55, typical   | <-62, typical           | <-75, typical |  |
| >3 GHz to 6 GHz                                                                    | <-55, typical   | <-57, typical           | <-70, typical |  |
| Conditioner output full scale lovel > 20 dBm measured with a single tone at 1 dBES |                 |                         |               |  |

Conditions: output full scale level ≥-30 dBm; measured with a single tone at -1 dBFS.

## **Third-Order Output Intermodulation**

Table 19. Third-Order Output Intermodulation Distortion (IMD<sub>3</sub>)

| Fundamental Frequency | IMD <sub>3</sub> (dBc) |             |
|-----------------------|------------------------|-------------|
| Fundamental Frequency | -20 dBm Tones          | 0 dBm Tones |
| 200 MHz to <2.2 GHz   | -53                    | -31         |
| 2.2 GHz to 6 GHz      | -43                    | -23         |

Conditions: output full scale level ≥-30 dBm; measured with a single tone at -1 dBFS.

## P1 dB



Figure 17. Measured P1 dB Gain Compression, Typical

## LO Residual Power

| Conton Exemple      | LO Residual Power (dBc)    |                            |
|---------------------|----------------------------|----------------------------|
| Center Frequency    | Self-Calibration °C ± 1 °C | Self-Calibration °C ± 5 °C |
| ≤109 MHz            | -60, typical               | -49, typical               |
| >109 MHz to 200 MHz | -65, typical               | -50, typical               |
| >200 MHz to 2 GHz   | -67, typical               | -60, typical               |
| >2 GHz to 3 GHz     | -60, typical               | -53, typical               |
| >3 GHz to 5 GHz     | -65, typical               | -58, typical               |

| Contor Fromuonov | LO Residual Power (dBc)Self-Calibration °C ± 1 °CSelf-Calibration °C ± 5 °C |              |
|------------------|-----------------------------------------------------------------------------|--------------|
| Center Frequency |                                                                             |              |
| >5 GHz to 6 GHz  | -60, typical                                                                | -55, typical |

Conditions: configured power levels -50 dBm to +10 dBm.

This specification is valid only when the system is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the WTS temperature drifts ±5 °C from the temperature at the last self-calibration. For temperature changes >±5 °C from self-calibration, LO residual power is -40 dBc.

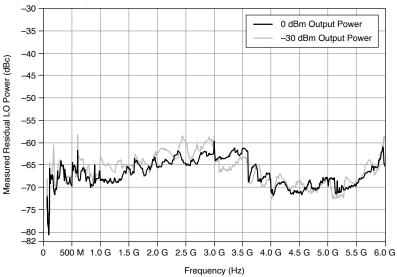



Figure 18. Signal Generator LO Residual Power<sup>[]</sup>, 109 MHz to 6 GHz, Typical

Table 21. Signal Generator LO Residual Power (dBc), Low Power

| Center Frequency    | Self-Calibration °C ± 5 °C |
|---------------------|----------------------------|
| ≤109 MHz            | -49, typical               |
| >109 MHz to 375 MHz | -50, typical               |
| >375 MHz to 2 GHz   | -60, typical               |
| >2 GHz to 3 GHz     | -53, typical               |
| >3 GHz to 5 GHz     | -58, typical               |

| Center Frequency | Self-Calibration °C ± 5 °C |
|------------------|----------------------------|
| >5 GHz to 6 GHz  | -55, typical               |

Conditions: configured power levels < -50 dBm to -70 dBm.

This specification is valid only when the system is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the system temperature drifts ±5 °C from the temperature at the last self-calibration. For temperature changes >±5 °C from self-calibration, LO residual power is -40 dBc.

#### **Residual Sideband Image**

| Table 22. Signal Generato | r Residual Sideband | Imag | е |
|---------------------------|---------------------|------|---|
|                           |                     |      |   |

|                     | Residual Sideband Image (dBc) |                             |                               |
|---------------------|-------------------------------|-----------------------------|-------------------------------|
| Center Frequency    | Bandwidth (MHz)               | Self-Calibration °C±<br>1°C | Self-Calibration °C ±<br>5 °C |
| ≤109 MHz            | 20                            | -55, typical                | -42, typical                  |
| >109 MHz to 200 MHz | 80                            | -45, typical                | -40, typical                  |
| >200 MHz to 500 MHz | 200                           | -45, typical                | -50, typical                  |
| >500 MHz to 2 GHz   | 200                           | -70, typical                | -63, typical                  |
| >2 GHz to 6 GHz     | 200                           | -65, typical                | -55, typical                  |

Conditions: reference levels -30 dBm to +30 dBm.

This specification describes the maximum residual sideband image within a 200 MHz bandwidth at a given RF center frequency. Bandwidth is restricted to 20 MHz for LO frequencies ≤109 MHz.

This specification is valid only when the system is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the system temperature drifts ±5 °C from the temperature at the last self-calibration. For temperature changes >±5 °C from

|                                                          |                 | Residual Sideband Image (    |                               | and Image (dBc) |
|----------------------------------------------------------|-----------------|------------------------------|-------------------------------|-----------------|
| Center Frequency                                         | Bandwidth (MHz) | Self-Calibration °C ±<br>1°C | Self-Calibration °C ±<br>5 °C |                 |
| self-calibration, residual image suppression is -40 dBc. |                 |                              |                               |                 |

Figure 19. Signal Generator Residual Sideband Image<sup>[]</sup>, 0 dBm Average Output Power, Typical

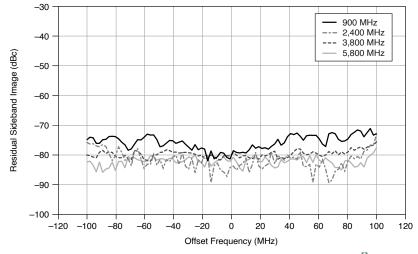
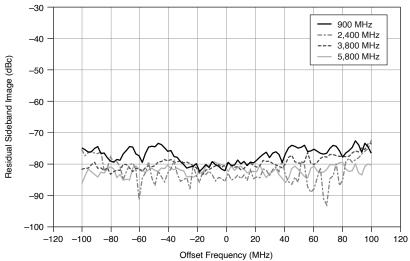



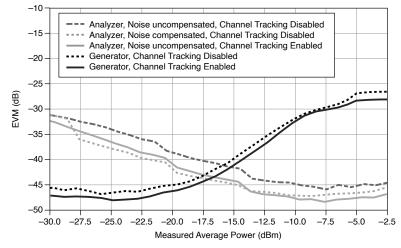

Figure 20. Signal Generator Residual Sideband Image<sup>[]</sup>, -30 dBm Average Output Power, Typical



# **Application-Specific Modulation Quality**

Typical performance assumes the WTS is operating within  $\pm$  5 °C of the previous selfcalibration temperature and that the ambient temperature is 0 °C to 50 °C. **Note** Support for standards depends on the version of WTS Software that your application is using.

#### WLAN 802.11ax


| 802.11ax Signal generator residual EVM (bandwidth: 80 MHz) <sup>11</sup> |                 |
|--------------------------------------------------------------------------|-----------------|
| Channel tracking disabled                                                | -44 dB, nominal |
| Channel tracking enabled                                                 | -46 dB, nominal |

#### Table 23. 802.11ax Signal Analyzer EVM

| Deadwidth (MUL)                       | 802.11ax Signal Analyzer Residual EVM (dB) |                             |
|---------------------------------------|--------------------------------------------|-----------------------------|
| Bandwidth (MHz)                       | Channel Tracking Disabled                  | Channel Tracking Enabled    |
| 80, noise uncompensated               | -44, nominal                               | -46, nominal                |
| 80, noise compensated                 | -46, nominal                               | _                           |
| Conditions: Port< <b>n</b> > to RF OU | T of PXIe-5840 + external LO; 80 MHz       | ; 5,800 MHz; average power: |

-10 dBm to +20 dBm; EVM averaged over 20 packets; 16 OFDM data symbols; MCS = 11; 1,024 QAM.

Figure 21. 802.11ax RMS EVM versus Measured Average Power, 80 MHz Bandwidth, Nominal



11. Conditions: Port <n> to RF IN of PXIe-5840 + external LO; 80 MHz; 5,800 MHz; average power -30 dBm to -20 dBm; EVM averaged over 20 packets; 16 OFDM data symbols; MCS = 11; 1,024 QAM.

#### WLAN 802.11ac

#### Table 24. 802.11ac Signal Generator EVM

| Danduidth (MII-)                                                                                      | 802.11ac Signal           | 802.11ac Signal Generator EVM (dB) |  |
|-------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|--|
| Bandwidth (MHz)                                                                                       | Channel Tracking Disabled | Channel Tracking Enabled           |  |
| 80                                                                                                    | -36, typical              | -39, typical                       |  |
| 160                                                                                                   | -34.5, typical            | -38.5, typical                     |  |
| Conditions: Port< <b>n</b> > to RF IN of PXIe-5645; 5,180 MHz; average power: -36 dBm to -10 dBm; EVM |                           |                                    |  |

averaged over 50 packets; power averaged over 10 packets; 16 OFDM data symbols; MCS = 9.

Table 25. 802.11ac Signal Analyzer EVM

| Pandwidth (MUz) | 802.11ac Signal Analyzer EVM (dB) |                          |
|-----------------|-----------------------------------|--------------------------|
| Bandwidth (MHz) | Channel Tracking Disabled         | Channel Tracking Enabled |
| 80              | -38, typical                      | -41.5, typical           |
| 160             | -35, typical                      | -39, typical             |

Conditions: Port<**n**> to RF OUT of PXIe-5645; 5,180 MHz; average power: -20 dBm to 0 dBm; EVM averaged over 50 packets; power averaged over 10 packets; 16 OFDM data symbols; MCS = 9.

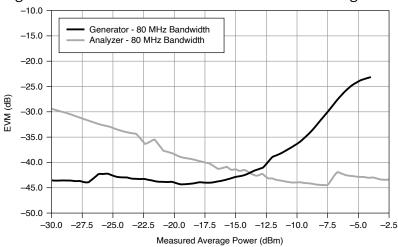



Figure 22. 802.11ac RMS EVM Versus Measured Average Power<sup>12[12]</sup>, 80 MHz Bandwidth, Typical

Conditions: Generator = Port<*n*> to RF IN of PXIe-5645; analyzer = Port<*n*> to RF OUT of PXIe-5645;
 5,180 MHz; analyzer maximum power 10 dB above generator power level; EVM averaged over 50 packets; power averaged over 10 packets; 16 OFDM data symbols; MCS = 9.

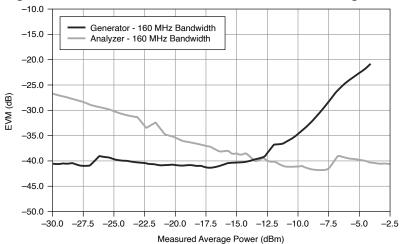
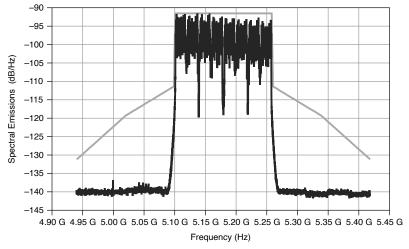




Figure 23. 802.11ac RMS EVM Versus Measured Average Power<sup>[12]</sup>, 160 MHz Bandwidth, Typical





#### WLAN 802.11n

Table 26. 802.11n OFDM EVM (rms)

|                 | 802.11n OFDM EVM (rms) (dB) |                  |
|-----------------|-----------------------------|------------------|
| Frequency (MHz) | 20 MHz Bandwidth            | 40 MHz Bandwidth |
| 2,412 to 2,484  | -48, typical                | -47, typical     |
| 4,915 to 5,825  | -42, typical                | -42, typical     |
|                 |                             |                  |

Conditions: Port<**n**> into PXIe-5646; generator average power: -16 dBm; maximum input power -6 dBm; 5 packets; MCS = 7.

 Conditions: Port<*n*> to Port<*n*>; generator average power: -16 dBm; maximum input power: -6 dBm; 160 MHz bandwidth; EVM averaged over 50 packets; power averaged over 10 packets; 16 OFDM data symbols; MCS = 9.

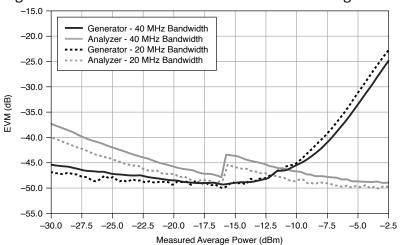
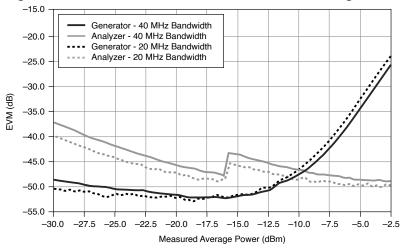




Figure 25. 802.11n RMS EVM Versus Measured Average Power<sup>14[14]</sup>, Typical





## WLAN 802.11a/g

Table 27. 802.11a/g OFDM EVM (rms) (dB)

| Frequency (MHz) | 20 MHz Bandwidth |
|-----------------|------------------|
| 2,412 to 2,484  | -50, typical     |
| 4,915 to 5,825  | -44, typical     |

Conditions: Port<**n**> into PXIe-5646; generator average power: -16 dBm; maximum input power -6 dBm; 5 packets; data rate = 54 MBps.

Conditions: Generator = Port<*n*> to RF IN of PXIe-5646; analyzer = Port<*n*> to RF OUT of PXIe-5646;
 2,412 MHz; analyzer maximum power 10 dB above generator power level; EVM averaged over 50 packets; power averaged over 10 packets; 16 OFDM data symbols; MCS = 7.

| Spectrum flatness <sup>15</sup> |               |
|---------------------------------|---------------|
| 2.4 GHz frequency band          | 4 dB, typical |
| 5 GHz frequency band            | 4 dB, typical |

Figure 27. 802.11a/g RMS EVM Versus Measured Average Power<sup>16[16]</sup>, 2,412 MHz, Typical

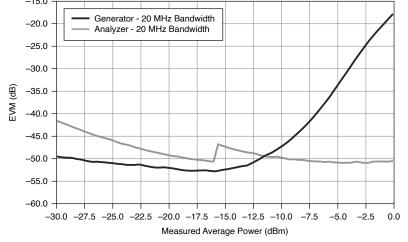
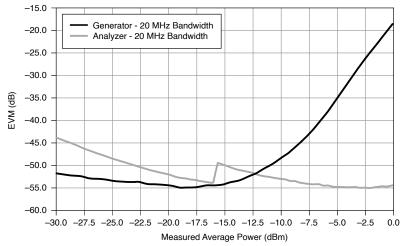




Figure 28. 802.11a/g RMS EVM Versus Measured Average Power<sup>[16]</sup>, 2,412 MHz, Channel Tracking Enabled, Typical



- Conditions: Port<*n*> into PXIe-5646; generator average power: -16 dBm; maximum input power -6 dBm; 5 packets; data rate = 54 MBps.
- 16. Conditions: Generator = Port<*n*> to RF IN of PXIe-5646; analyzer = Port<*n*> to RF OUT of PXIe-5646; 2,412 MHz; analyzer maximum power 10 dB above generator power level; EVM averaged over 50 packets; power averaged over 10 packets; 16 OFDM data symbols; data rate = 54 MBps.

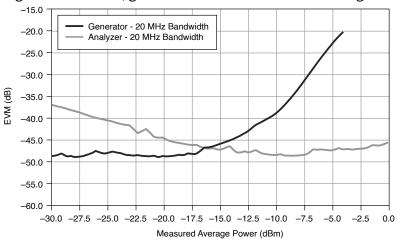
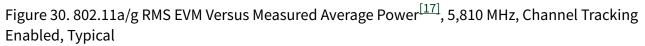
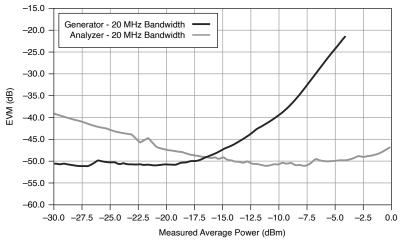





Figure 29. 802.11a/g RMS EVM Versus Measured Average Power<sup>17[17]</sup>, 5,810 MHz, Typical





## WLAN 802.11b/g-DSSS

| 802.11b DSSS EVM $^{18}$ (rms), 20 MHz bandwidth |                |
|--------------------------------------------------|----------------|
| 2,412 MHz to 2,484 MHz                           | 0.53%, typical |

- Conditions: Generator = Port<*n*> to RF IN of PXIe-5646; analyzer = Port<*n*> to RF OUT of PXIe-5646;
   5,810 MHz; analyzer maximum power 10 dB above generator power level; EVM averaged over 50 packets; power averaged over 10 packets; 16 OFDM data symbols; data rate = 54 MBps.
- Conditions: Port<*n*> into PXIe-5646; generator average power: -16 dBm; maximum input power -6 dBm; 5 packets; data rate = 2 MBps.

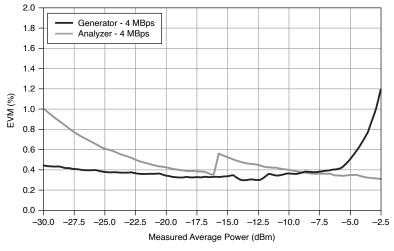



Figure 31. 802.11b RMS EVM Versus Measured Average Power<sup>19</sup>, Typical

Bluetooth<sup>20</sup> (1.0, 2.0, 2.1, 3.0, 4.0, 4.2)

| In-band emissions (adjacent channel)       | -59 dBc, typical |
|--------------------------------------------|------------------|
| Average DEVM RMS, enhanced data rate (EDR) | 0.4%, typical    |
| Peak DEVM (EDR)                            | 1.2%, typical    |

#### LR-WPAN 802.15.4-BPSK/OQPSK (ZigBee)

| Output power           | SA accuracy ± 0.45 dB to 0.65 dB, nominal |
|------------------------|-------------------------------------------|
| Power spectral density | SA accuracy ± 0.45 dB to 0.65 dB, nominal |

- 19. Conditions: Generator = Port<*n*> to RF IN of PXIe-5646; analyzer = Port<*n*> to RF OUT of PXIe-5646; 2,412 MHz; analyzer maximum power 10 dB above generator power level; EVM averaged over 50 packets; power averaged over 5 packets; 16 OFDM data symbols; data rate = 2 MBps.
- **20.** Conditions: Port<*n*> loopback to Port<*n*>; 3-DH5 packet; 2,400 MHz to 2,483.5 MHz; generator power

level -12 dBm; analyzer maximum power level -10 dBm.

| Occupied bandwidth         | SA accuracy ± 0.45 dB to 0.65 dB, nominal |
|----------------------------|-------------------------------------------|
| Center frequency tolerance | SA accuracy ± 0.125 ppm (OCXO)            |
| EVM <sup>21</sup>          | 0.5%, nominal                             |
| Offset EVM <sup>22</sup>   | 0.5%, nominal                             |

#### Z-Wave G.9959-FSK/GFSK

| Output power                            | SA accuracy ± 0.45 dB to 0.65 dB, nominal |
|-----------------------------------------|-------------------------------------------|
| Spectrum emission mask                  | SA accuracy ± 0.45 dB to 0.65 dB, nominal |
| Occupied bandwidth                      | SA accuracy ± 0.45 dB to 0.65 dB, nominal |
| Frequency error                         | SA accuracy ± 0.125 ppm (OCXO)            |
| Frequency deviation error <sup>23</sup> | 0.6%, nominal                             |

- 21. Conditions: Port<n> loopback to Port<n>; BPSK; 906 MHz to 924 MHz; generator power levels
  -35 dBm to +5 dBm; analyzer maximum power 3 dB above generator power level; EVM averaged over 10 packets; power averaged over 10 packets.
- 22. Conditions: Port<n> loopback to Port<n>; OQPSK; 2,405 MHz to 2,480 MHz; generator power levels
  -35 dBm to +5 dBm; analyzer maximum power 3 dB above generator power level; EVM averaged over 10 packets; power averaged over 10 packets.
- 23. Conditions: Port<n> loopback to Port<n>; R1, R2, and R3; 865.2 MHz to 926.3 MHz; generator power levels -35 dBm to +5 dBm; analyzer maximum power 1 dB above generator power level; frequency deviation error averaged over 10 packets; power averaged over 10 packets.

## GSM

| Phase error <sup>24</sup> |                |                |
|---------------------------|----------------|----------------|
| Peak phase error (GMSK)   |                | 0.70°, typical |
| RMS phase error (GMSK)    |                | 0.25°, typical |
| EDGE EVM <sup>25</sup>    |                |                |
| EDGE RMS EVM              | 0.35°, typical |                |
| EDGE peak EVM             | 1.00%, typical |                |

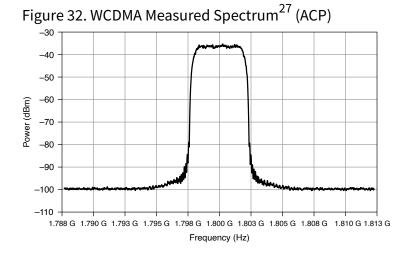
#### Table 28. GSM Output RF Spectrum (GMSK)

| Frequency | Residual Relative Power, Due<br>to Modulation (dB) | Residual Relative Power, Due<br>to Switching (dB) |
|-----------|----------------------------------------------------|---------------------------------------------------|
| 600 kHz   | -76, typical                                       | -71, typical                                      |
| 1.2 MHz   | -76, typical                                       | -72, typical                                      |
| 1.8 MHz   | -71, typical                                       | -72, typical                                      |

Conditions: Port<**n**> loopback to Port<**n**>; 380 MHz to 1.9 GHz; generator power levels -20 dBm to 0 dBm; analyzer maximum power 2 dB above generator power level.

#### Table 29. GSM Output RF Spectrum (8-PSK)

| Frequency | Residual Relative Power, Due<br>to Modulation (dB) | Residual Relative Power, Due<br>to Switching (dB) |
|-----------|----------------------------------------------------|---------------------------------------------------|
| 600 kHz   | -74, typical                                       | -70, typical                                      |
| 1.2 MHz   | -74, typical                                       | -70, typical                                      |


- 24. Conditions: Port<**n**> loopback to Port<**n**>; 380 MHz to 1.9 GHz; generator power levels -25 dBm to 0 dBm; analyzer maximum power 2 dB above generator power level.
- 25. Conditions: Port<**n**> loopback to Port<**n**>; 380 MHz to 1.9 GHz; generator power levels -30dBm to -10 dBm; analyzer maximum power 5 dB above generator power level.

| Frequency | Residual Relative Power, Due<br>to Modulation (dB) | Residual Relative Power, Due<br>to Switching (dB) |
|-----------|----------------------------------------------------|---------------------------------------------------|
| 1.8 MHz   | -68, typical                                       | -70, typical                                      |

Conditions: Port<**n**> loopback to Port<**n**>; 380 MHz to 1.9 GHz; generator power levels -20 dBm to 0 dBm; analyzer maximum power 5 dB above generator power level.

# WCDMA<sup>26</sup>

| BPSK RMS EVM            | 0.70%, typical  |
|-------------------------|-----------------|
| BPSK maximum EVM        | 3.00%, typical  |
| BPSK ACLR, 5 MHz offset | 60 dB, typical  |
| BPSK SEM worst margin   | -18 dB, typical |



**26.** Conditions: Port<*n*> loopback to Port<*n*>; 710 MHz to 3.8 GHz; generator power level -15 dBm;

analyzer maximum power 6 dB above generator power level.

27. Conditions: Port<**n**> loopback to Port<**n**>; BPSK; 30 averages; generator power level -16 dBm; analyzer maximum power level -10 dBm.

# CDMA2K<sup>28</sup>

| Average EVM RMS, RC1 | 1.1%, typical |  |
|----------------------|---------------|--|
|                      |               |  |

#### Table 30. Adjacent Channel Power (ACP)

| Frequency Offset (MHz) | ACP (dBc)   |
|------------------------|-------------|
| 0.885                  | 60, typical |
| 1.98                   | 61, typical |

# LTE<sup>29</sup>

| Average composite EVM | 0.8%, typical |
|-----------------------|---------------|
|-----------------------|---------------|

#### Table 31. Adjacent Channel Power (ACP), FDD

| Frequency Offset (MHz) | ACP (dBc)      |
|------------------------|----------------|
| 7.5                    | -48.5, typical |
| 10                     | -47, typical   |
| 12.5                   | -50, typical   |

#### Table 32. Adjacent Channel Power (ACP), TDD

| Frequency Offset (MHz) | ACP (dBc)    |
|------------------------|--------------|
| 5.8                    | -51, typical |
| 7.4                    | -52, typical |

- **28.** Conditions: Port<*n*> loopback to Port<*n*>; 710 MHz to 3.8 GHz; generator power levels -28 dBm to -5 dBm; analyzer maximum power 7 dB above generator power level.
- 29. Conditions: Port<*n*> loopback to Port<*n*>; 710 MHz to 3.8 GHz; generator power levels -28 dBm to -5 dBm; analyzer maximum power 9 dB above generator power level for TDD; analyzer maximum power 10 dB above generator power level for FDD.

| Frequency Offset (MHz) | ACP (dBc)    |
|------------------------|--------------|
| 10                     | -46, typical |

#### **TD-SCDMA**

| Average EVM RMS <sup>30</sup>                     | 0.9%, typical   |
|---------------------------------------------------|-----------------|
| Spectral emission mask worst margin <sup>31</sup> | -16 dB, typical |

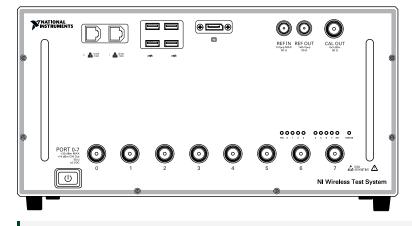
#### Table 33. Adjacent Channel Power (ACP), TDD

| ACP (dBc)   |
|-------------|
| 53, typical |
| 64, typical |
| 64, typical |
| 64, typical |
| 64, typical |
|             |

Conditions: Port<**n**> loopback to Port<**n**>; 710 MHz to 3.8 GHz; generator power levels -18 dBm to -5 dBm; analyzer maximum power 5 dB above generator power level.

## **Baseband Characteristics**

| A/D converters (ADC)      |          |
|---------------------------|----------|
| Resolution                | 14 bits  |
| Sample rate <sup>32</sup> | 250 MS/s |


- 30. Conditions: Port<**n**> loopback to Port<**n**>; 710 MHz to 3.8 GHz; generator power levels -28 dBm to -5 dBm; analyzer maximum power 5 dB above generator power level.
- 31. Conditions: Port<**n**> loopback to Port<**n**>; 710 MHz to 3.8 GHz; generator power levels -22 dBm to -5 dBm; analyzer maximum power 5 dB above generator power level.

| I/Q data rate <sup>33</sup> | 4 kS/s to 250 MS/s |
|-----------------------------|--------------------|
| D/A converters (DAC)        |                    |
| Resolution                  | 16 bits            |
| Sample rate <sup>34</sup>   | 250 MS/s           |
| I/Q data rate <sup>35</sup> | 4 kS/s to 250 MS/s |

### **Onboard DRAM**

| Memory size | 2 banks, 256 MB/bank |
|-------------|----------------------|
|             |                      |

## Hardware Front Panel



Note The previous illustration is not representative of all WTS options. The

- 32. ADCs are dual-channel components with each channel assigned to I and Q, respectively.
- 33. I/Q data rates lower than 250 MS/s are achieved using fractional decimation.
- 34. DACs are dual-channel components with each channel assigned to I and Q, respectively. DAC sample rate is internally interpolated to 1 GS/s, automatically configured.
- 35. I/Q data rates lower than 250 MS/s are achieved using fractional interpolation.

### front panel of your WTS may differ.

#### Table 34. Device Front Panel Icon Definitions

| $\triangle$ | Refer to the user documentation for required<br>maintenance measures to ensure user safety<br>and/or preserve the specified EMC performance.                                                                                                                                             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | The signal pins of this product's input/output<br>ports can be damaged if subjected to ESD. To<br>prevent damage, turn off power to the product<br>before connecting cables and employ industry-<br>standard ESD prevention measures during<br>installation, maintenance, and operation. |

## **Front Panel Connectors**

## Port (0..<n>)

| Connectors                    | N (female)          |                        |
|-------------------------------|---------------------|------------------------|
| Input impedance               | 50 Ω, nominal, AC o | coupled                |
| Signal analyzer operation     |                     |                        |
| Input amplitude               |                     | +30 dBm, maximum       |
| Absolute maximum input power  |                     | +30 dBm, CW RMS        |
| Maximum safe DC input voltage |                     | ±5 VDC, nominal        |
| Signal generator operation    |                     |                        |
| Output impedance              |                     | Ω, nominal, AC coupled |

| Output amplitude                 | +18 dBm, maximum |
|----------------------------------|------------------|
| Absolute maximum reverse power   | +30 dBm, CW RMS  |
| Maximum reverse DC voltage level | ±5 V, nominal    |

#### **Signal Analyzer Operation**

Signal Analyzer Return Loss (Voltage Standing Wave Ratio (VSWR))

#### Table 35. Signal Analyzer Return Loss (dB) (VSWR)

| Frequency                                                                          | VSWR                   |  |
|------------------------------------------------------------------------------------|------------------------|--|
| 109 MHz ≤ <b>f</b> < 2.4 GHz                                                       | 15.5 (1.40:1), typical |  |
| 2.4 GHz ≤ <b>f</b> < 4 GHz                                                         | 12.7 (1.60:1), typical |  |
| $4 \text{ GHz} \le \mathbf{f} < 6 \text{ GHz}$ 12.0 (1.67:1)                       |                        |  |
| Return loss for frequencies <109 MHz is typically better than 14 dB (VSWR <1.5:1). |                        |  |

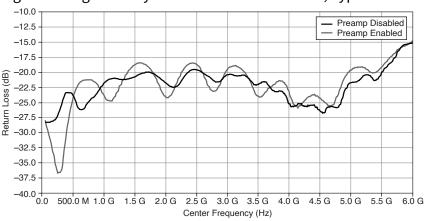
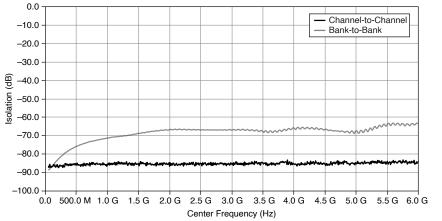
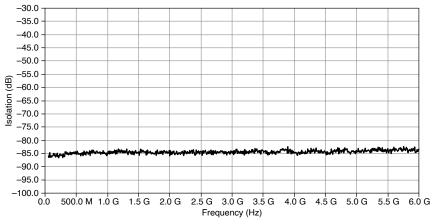




Figure 33. Signal Analyzer Channel Return Loss<sup>36</sup>, Typical


36. Signal generator path not generating and in default state.

Isolation<sup>37</sup>



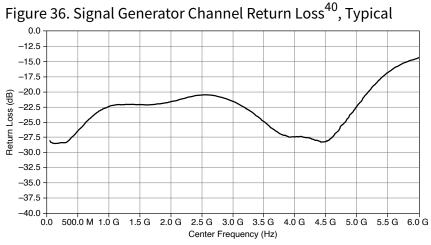
#### Figure 34. Signal Analyzer Channel-to-Channel and Bank-to-Bank Isolation<sup>38</sup>, Typical





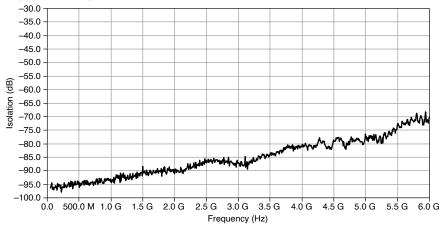
#### Signal Generator Operation

Signal Generator Return Loss (VSWR)

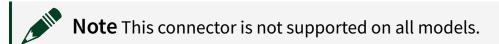

Table 36. Signal Generator Return Loss (dB) (VSWR)

| Frequency                  | VSWR                   |
|----------------------------|------------------------|
| 109 MHz ≤ <b>f</b> < 2 GHz | 19.0 (1.25:1), typical |
| 2 GHz ≤ <b>f</b> < 5 GHz   | 14.0 (1.50:1), typical |
| 5 GHz ≤ <b>f</b> < 6 GHz   | 11.0 (1.78:1)          |

- 37. Measured with an aggressor at one analyzer channel and the system configured to acquire from another analyzer channel or bank. The isolation measurement results are limited by the instrumentation used for testing.
- 38. The aggressor signal analyzer port is not terminated.
- 39. The aggressor signal analyzer port is internally terminated to 50  $\Omega$ .


| Frequency | VSWR |
|-----------|------|
|           |      |

Return loss for frequencies <109 MHz is typically better than 20 dB (VSWR <1.22:1).




Isolation





#### **REF IN**



| Connector BNC |  |
|---------------|--|
|---------------|--|

- 40. Signal generator path not generating and in default state.
- 41. Isolation between bank A (ports <0..3>) and bank B (ports <4..7>).

| Frequency                                 | 10 MHz                                                        |                           |
|-------------------------------------------|---------------------------------------------------------------|---------------------------|
| Tolerance <sup>42</sup>                   |                                                               | $\pm 10 \times 10^{-6}$   |
| Amplitude                                 | -                                                             |                           |
| Square                                    | 0.7 $V_{pk-pk}$ to 5.0 $V_{pk-pk}$ into 50 $\Omega$ , typical |                           |
| Sine <sup>43</sup>                        | 1.4 $V_{pk-pk}$ to 5.0 $V_{pk-pk}$ into 50 $\Omega$ , typical |                           |
| Input impedance 50 Ω, nominal, AC coupled |                                                               | 50 Ω, nominal, AC coupled |
| Maximum input power +30 dBm               |                                                               | +30 dBm                   |

#### **REF OUT**

| Connector                     | BNC                                                |
|-------------------------------|----------------------------------------------------|
| Reference Clock <sup>44</sup> | 10 MHz, nominal                                    |
| Amplitude                     | 1.65 V <sub>pk-pk</sub> into 50 $\Omega$ , nominal |
| Output impedance              | 50 Ω, nominal, AC coupled                          |

#### 42. *Frequency accuracy = tolerance × reference frequency.*

43. 1 V<sub>rms</sub> to 3.5 V<sub>rms</sub>, typical. Jitter performance improves with increased slew rate of input signal.

44. Refer to the Internal Frequency Reference section for accuracy information.

| Maximum reverse power | +30 dBm |
|-----------------------|---------|
|-----------------------|---------|

#### CAL OUT

| Connector                          | N type (female)           |                       |                               |
|------------------------------------|---------------------------|-----------------------|-------------------------------|
| Frequency range <sup>45</sup>      | 65 MHz to 6 GHz           |                       |                               |
| Power output                       |                           |                       |                               |
| 65 MHz to 3 GHz                    |                           | 3                     | 3 dBm, nominal                |
| >3 GHz to 6 GHz                    |                           | C                     | ) dBm, nominal                |
| Power                              |                           |                       |                               |
| 65 MHz to 3.6 GHz 0                |                           | 0 dBm, ±2 dB, typical |                               |
| >3.6 GHz to 6 GHz 3 c              |                           | 3 dBm, ±2 dB, typical |                               |
| Output impedance                   | 50 Ω, nominal, AC coupled |                       |                               |
| Output return loss                 | >11.0 dB (VSWR <1.8:1),   |                       | , typical, referenced to 50 Ω |
| Output isolation (state: disabled) |                           |                       |                               |
| <2.5 GHz frequency                 |                           |                       | -45 dBc, nominal              |

45. When tuning in the range of 65 MHz to 375 MHz using the REF IN channel, the exported LO is twice the RF frequency requested.

| ≥2.5 GHz frequency | -35 dBc, nominal |
|--------------------|------------------|
|--------------------|------------------|

#### Ethernet/LAN Interface

| Connectors (2) | Ethernet |
|----------------|----------|
|----------------|----------|

#### USB

| Connectors (4) USI | SB 2.0 |
|--------------------|--------|
|--------------------|--------|

#### **Monitor Output**

| Connectors | DisplayPort |
|------------|-------------|
|------------|-------------|

# **Power Requirements**

# AC Input

| Input voltage range       | 100 VAC to 240 VAC |  |
|---------------------------|--------------------|--|
| Input frequency           | 50/60 Hz           |  |
| Operating frequency range | 47 Hz to 63 Hz     |  |
| Input current range       | 7.3 A to 3.5 A     |  |
| Line regulation           |                    |  |

| 3.3 V            |                                                    | <±0.2% |
|------------------|----------------------------------------------------|--------|
| 5 V              |                                                    | <±0.1% |
| ±12 V            |                                                    | <±0.1% |
| Efficiency       | 70%, typical                                       |        |
| Power disconnect | The AC power cable provides main power disconnect. |        |

# Calibration

| Interval | 2 years |
|----------|---------|
|----------|---------|

## **Two Year Calibration Interval Correction Factors**

| Table 37. Two Year Calibration Int | erval Correction Factors |
|------------------------------------|--------------------------|
|------------------------------------|--------------------------|

|                         | Two Year Correction (±dB)                      |                                                 |                                                               |  |
|-------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|--|
| Center Frequency        | Signal Analyzer Absolute<br>Amplitude Accuracy | Signal Generator Absolute<br>Amplitude Accuracy | Third Order<br>Output<br>Intermodulation<br>Distortion (IMD3) |  |
| 65 MHz to<br><109 MHz   | 0.11                                           | 0.20                                            | 0.60                                                          |  |
| ≥109 MHz to<br><600 MHz | 0.11                                           | 0.20                                            | 0.60                                                          |  |
| ≥600 MHz to<br><1 GHz   | 0.11                                           | 0.20                                            | 0.60                                                          |  |
| ≥1 GHz to               | 0.11                                           | 0.20                                            | 0.60                                                          |  |

|                         | Two Year Correction (±dB)                      |                                                 |                                                               |  |
|-------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|--|
| Center Frequency        | Signal Analyzer Absolute<br>Amplitude Accuracy | Signal Generator Absolute<br>Amplitude Accuracy | Third Order<br>Output<br>Intermodulation<br>Distortion (IMD3) |  |
| <1.6 GHz                |                                                |                                                 |                                                               |  |
| ≥1.6 GHz to<br><2.7 GHz | 0.11                                           | 0.20                                            | 0.60                                                          |  |
| ≥2.7 GHz to<br><3 GHz   | 0.11                                           | 0.20                                            | 0.60                                                          |  |
| ≥3 GHz to<br><3.6 GHz   | 0.11                                           | 0.20                                            | 0.60                                                          |  |
| ≥3.6 GHz to<br><4 GHz   | 0.11                                           | 0.30                                            | 0.90                                                          |  |
| ≥4 GHz to <5 GHz        | 0.16                                           | 0.30                                            | 0.90                                                          |  |
| ≥5 GHz to <6 GHz        | 0.16                                           | 0.40                                            | 1.20                                                          |  |

## Self-Calibration

Self-calibration adjusts the WTS for variations in the environment using an onboard high-precision calibration tone. Perform a complete self-calibration after first setting up your WTS and letting it warm up for 30 minutes.

**Note** Warm up begins when the PXI Express has been powered on and the operating system has completely loaded.

The WTS is calibrated at the factory; however, you should perform a self-calibration in any of the following situations:

- After first setting up the WTS .
- When the system is in an environment where the ambient temperature varies or the WTS temperature has drifted more than ±2 °C from the temperature at the last self-calibration.
- To periodically adjust for small performance drifts that occur with product aging.

NI recommends you perform a full instrument self-calibration by executing the CALibration:RF:FULL command either through the WTS Software UI or sending it as a SCPI command.

**Note** Self-calibration may take up to 10 minutes to complete.

# **Physical Characteristics**

| Dimensions (including handles) |                     | 43.51 cm × 35.81 cm × 19.43 cm<br>(17.13 in. × 14.1 in. × 7.65 in.) |
|--------------------------------|---------------------|---------------------------------------------------------------------|
| Weight                         |                     |                                                                     |
| WTS -01                        | 16.78 kg (37 lb)    |                                                                     |
| WTS -02                        | 18.14 kg (40 lb)    |                                                                     |
| WTS -03                        | 18.31 kg (40.38 lk  | ))                                                                  |
| WTS -04                        | 17.42 kg (38.40 lb) |                                                                     |
| WTS -05                        | 20.32 kg (44.80 lb) |                                                                     |

### Environment

| Maximum altitude | 2,000 m (800 mbar) (at 25 °C ambient temperature) |
|------------------|---------------------------------------------------|
| Pollution Degree | 2                                                 |

### Indoor use only.

# **Operating Environment**

| Ambient<br>temperature<br>range | 0 °C to 50 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800FClass 3 low temperature limit and MIL-PRF-28800FClass 2 high temperature limit.) |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Relative<br>humidity<br>range   | 10% to 90%, noncondensing                                                                                                                                                      |  |

# Storage Environment

| Ambient temperature<br>range | -40 °C to 71 °C                                                          |
|------------------------------|--------------------------------------------------------------------------|
| Relative humidity range      | 10% to 90%, noncondensing (Tested in accordance with<br>IEC 60068-2-56.) |

# **Shock and Vibration**

| Operating shock  | 30 g peak, half-sine, 11 ms pulse |  |  |
|------------------|-----------------------------------|--|--|
| Random vibration | andom vibration                   |  |  |
| Operating        | 5 Hz to 500 Hz, 0.3 g RMS         |  |  |
| Nonoperating     | 5 Hz to 500 Hz, 2.4 g RMS         |  |  |

# **Compliance and Certifications**

### **Safety Compliance Standards**

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

• **Note** For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

## **Electromagnetic Compatibility**

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

**Note** In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.



**Note** Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

**Note** For EMC declarations, certifications, and additional information, refer to the <u>Product Certifications and Declarations</u> section.

### **Product Certifications and Declarations**

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

### **Environmental Management**

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国RoHS)

 ●●●●中国RoHS-NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录ni.com/environment/ rohs\_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs\_china.)