PCI-5153 Specifications

Contents

PCI-5153 Specifications		2
i Cl-3133 Specifications	• •	J

PCI-5153 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- **Measured** specifications describe the measured performance of a representative model.

Specifications are *Typical* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- All filter settings.
- All impedance selections.
- Sample clock set to 1 GS/s.
- Real-Time Interleaved Sampling (TIS) mode provides a 2 GS/s real-time sample rate for a single channel.
- The module is warmed up for 15 minutes at ambient temperature.
- Self-calibration is completed after warm-up period.
- Calibration cycle is maintained.
- The PXI/PCI chassis fan speed is set to HIGH, the foam fan filters are removed if

present, and the empty slots contain slot blockers and filler panels. For more information about cooling, refer to the *Maintain Forced-Air Cooling Note to Users*.

Vertical

Analog Input (Channel 0 and Channel 1)

Number of channels	Two (simultaneously sampled)
Connectors	BNC

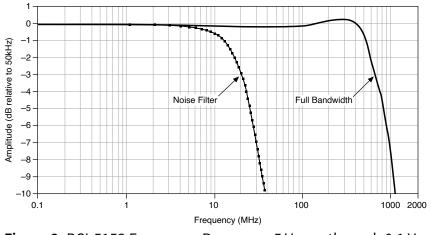
Impedance and Coupling

Input impedance	50 Ω ± 2 Ω
Voltage Standing Wave Ratio (VSWR)	1.2 DC to 500 MHz
Input coupling	AC, DC, GND

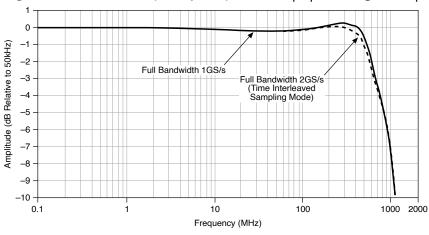
Voltage Levels

	0.1 V
Full scale (FS) input ranges (V _{pk-pk})	0.2 V
ratt scate (1 5) πιραττατίβες (Vpk-pk)	0.5 V
	1 V

	2 V 5 V
Maximum input overload	7 V RMS with Peaks ≤10 V


Accuracy

Resolution	8 bits		
DC accuracy ^[1]			
0.1 V to 1 V input range		\pm (1.0% of input + 1.3% of FS), typical \pm (2.2% of input + 1.8% of FS), warranted	
2 V to 5 V input range		±(1.4% of input + 1.3% of FS), typical ±(2.9% of input + 1.8% of FS), warranted	
DC drift ^[2] $\pm (0.14\% \text{ of input} + 0.05\% \text{ of FS}) \text{ per °C},$		nt + 0.05% of FS) per °C, non	minal
Crosstalk			
CH 0 to/from CH 1 ^[3]		<-80 dB at 10 MHz <-60 dB at 100 MHz	
External trigger to CH 0 or CH $1^{[4]}$		<-80 dB at 10 MHz <-70 dB at 100 MHz	


Bandwidth and Transient Response

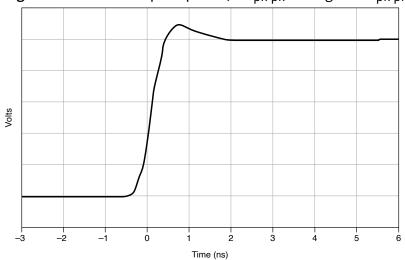

Bandwidth (-3 dB) ^{[5],[6]}	500 MHz minimum, warranted
Rise/fall time ^[6]	600 ps
Bandwidth limit filter	20 MHz noise filter
AC coupling cutoff (-3 dB) ^[7]	114 kHz

Figure 1. PCI-5153 Frequency Response, 5 V_{pk-pk} through 0.1 V_{pk-pk} Input Ranges, Measured

 $\textbf{Figure 2.} \ \ \textbf{PCI-5153} \ \ \textbf{Frequency Response}, 5 \ \textbf{V}_{pk\text{-}pk} \ \textbf{through 0.1} \ \textbf{V}_{pk\text{-}pk} \ \textbf{Input Ranges}, \\ \textbf{Measured}$

 $\textbf{Figure 3.} \ \mathsf{PCI-5153} \ \mathsf{Step} \ \mathsf{Response}, 5 \ \mathsf{V}_{\mathsf{pk-pk}} \ \mathsf{through} \ \mathsf{0.1} \ \mathsf{V}_{\mathsf{pk-pk}} \ \mathsf{Input} \ \mathsf{Ranges}, \\ \mathsf{Measured}$

Spectral Characteristics

ENOB ^[8]		
Noise filter on		7.3
Noise filter off		6.7
Signal to noise distortion (SINAD) ^[8]		
Noise filter on	45 dB	
Noise filter off	41 dB	

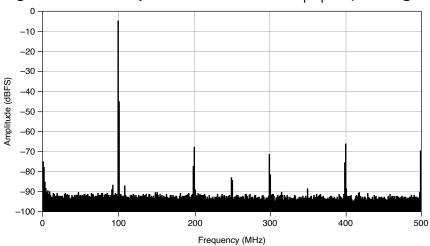
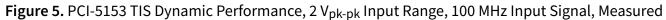
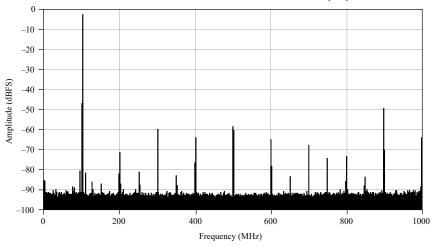




Figure 4. PCI-5153 Dynamic Performance, 2 V_{pk-pk} Input Range, 100 MHz Input Signal, Measured

Noise

Table 1. RMS Noise^[9]

Range (V _{pk-pk})	Noise Filter On	Noise Filter Off	Noise Filter On TIS Mode	Noise Filter Off TIS Mode
0.1	0.37% FS	0.44% FS	0.41% FS	0.71% FS
0.2 to 5	0.32% FS	0.32% FS	0.41% FS	0.41% FS

Channel-to-channel skew	<140 ps
-------------------------	---------

Horizontal

Sample Clock

Sources		
Internal	Onboard clock (internal VCSO) ^[10]	
External	PFI 0 (front panel SMB connector)	
Timebase frequency		1 GHz ^[11]

Onboard Clock (Internal VCSO)

Sample rate range		
Real-time sampling (single shot) ^[12]		15.26 kS/s to 1 GS/s
TIS ^[13] mode (single shot)		2 GS/s (single channel only)
Random interleaved sampling (RIS) mode ^[14]		2 GS/s to 20 GS/s in increments of 1 GS/s (repetitive waveforms only)
Timebase accuracy	У	
Not phase-locked to Reference clock	±30 ppm within ±3 °C of external calibration temperature, plus an additional ±7 ppm per °C outside of ±3 °C of external calibration temperature, warranted	
Phase-locked to	Equal to the Reference clock accuracy ^[15]	

Reference clock		
Sample clock delay range		±1 Sample clock period
Sample clock delay/adjustment resolution		≤5 ps

External Sample Clock

Sources	PFI 0 (front panel SMB connector)
Frequency range ^[16]	350 MHz to 1 GHz
Duty cycle tolerance	45% to 55%

Phase-Locked Loop (PLL) Reference Clock

Sources	RTSI 7 PFI 0 (front panel SMB connector)
Frequency range ^[17]	1 MHz to 20 MHz, in 1 MHz increments Default: 10 MHz
Duty cycle tolerance	45% to 55%

Exported Reference clock destinations	RTSI <07> PFI 1 (front panel SMB connector)
---------------------------------------	---

Sample Clock and Reference Clock Input (PFI 0, Front Panel **Connector**)

Input voltage range	Sine wave: $0.65 V_{pk-pk}$ to $2.8 V_{pk-pk}$ (0 dBm to 13 dBm)
Maximum input overload	7 V RMS with Peaks ≤10 V
Impedance	50 Ω
Coupling	AC

Reference Clock Output (PFI 1, Front Panel Connector)

Output impedance	50 Ω
Logic type	3.3 V CMOS, except when exporting 5 V
Maximum drive current	±24 mA

Trigger

Trigger types ^[18]	Edge Window Hysteresis Video Digital Immediate Software		
Trigger sources	CH 0 CH 1 TRIG PFI < 01> RTSI < 06> Software		
Time resolution	Time resolution		
Onboard clock, time-to-digital conversion circuit (TDC) on		5 ps	
Onboard clock, TDC off		1 ns	
External clock, TDC off External clock per		External clock period	
Minimum rearm time ^[19]			

TDC on		8 μs
TDC off		1 μs
Holdoff	From rearm time up to $[(2^{32} - 1) \times $ Sample	Clock Period
Trigger delay	From 0 up to [(2 ³⁵ - 1) - Posttrigger Samp	ples] × (1 / Sample Rate), in seconds

Analog Trigger

Trigger types	Edge Window Hysteresis	
Sources	CH 0 (front panel BNC connector) CH 1 (front panel BNC connector) TRIG (front panel BNC connector)	
Trigger level range		
CH 0, CH 1		100% FS
TRIG (External trigger)		±5 V
Voltage resolution	8 bits (1 in 256)	

Edge trigger sensitivity: CH 0, CH 1, TRIG (External trigger)			
DC to 300 MHz		10% FS, warranted	
>300 MHz to 500 MHz		10% FS, typical	
Trigger level accuracy ^[20]			
CH 0, CH 1 ±5% FS up to 10) MHz, warranted	
TRIG (External trigger) ±1 V (±10% FS)		up to 10 MHz, warranted	
Trigger jitter ^[20] 20 ps RMS maxi			
Trigger filters			
Low frequency (LF) reject			50 kHz
High frequency (HF) reject			50 kHz

Digital Trigger

Trigger type	Digital
Sources	RTSI <06> PFI <01> (front panel SMB connector)

External Trigger Input (Front Panel Connector)

Connector	BNC
Impedance	2.25 kΩ
Coupling	DC
Input voltage range	±5 V
Maximum input overload	Peaks ≤10 V

PFI 0 and PFI 1 (Programmable Function Interface, Front Panel **Connectors**)

Connector	SMB jack
Direction	Bidirectional

As an Input (Trigger)

Reference Destination	gger (acquisition arm) ce (stop) trigger erence trigger e trigger
-----------------------	--

Input impedance	150 kΩ, nominal
V _{IH}	2.0 V
VIL	0.8 V
Maximum input overload	-0.5 V to 5.5 V
Maximum frequency	25 MHz

As an Output (Event)

Sources	Ready for Start Start trigger (acquisition arm) Ready for Reference Reference (stop) trigger End of Record Ready for Advance Advance trigger Done (end of acquisition) Probe Compensation [21]
Output impedance	50 Ω

Logic type	3.3 V CMOS
Maximum drive current	±24 mA
Maximum frequency	25 MHz

Waveform Specifications

Table 2. Onboard Memory Size

Real-Time and RIS Modes	Real-Time TIS Mode	
8 MB standard (8 MS per channel)	8 MB standard (8 MS)	
64 MB option (64 MS per channel)	64 MB option (64 MS)	
256 MB option (256 MS per channel)	256 MB option (256 MS)	

Minimum record length	1 sample	
Number of pretrigger samples ^[22]	Zero up to full record length	
Number of posttrigger samples ^[22]	Zero up to full record length	
Maximum number of records in onboard memory ^[23]		
8 MB per channel		32,768
64 MB per channel		100,000

256 MB per channel		100,000
Allocated onboard memory per record	+(<i>Record Length</i> × 1 byte/sample) + multiple of 128 bytes	400 bytes+ rounded up to next

Calibration

External Calibration

External calibration calibrates the onboard references used in self-calibration and the external trigger levels. All calibration constants are stored in nonvolatile memory.

Self-Calibration

Self-calibration is done on software command. The calibration corrects for gain, offset, triggering, and timing errors for all input ranges, excluding External Trigger input channel.

Calibration Specifications

Interval for external calibration	2 years
Warm-up time ^[24]	15 minutes

Software

Driver Software

Driver support for this device was first available in NI-SCOPE3.5.

NI-SCOPE is an IVI-compliant driver that allows you to configure, control, and calibrate

the PCI-5153. NI-SCOPE provides application programming interfaces for many development environments.

Application Software

NI-SCOPE provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindows[™]/CVI[™]
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)

Interactive Soft Front Panel and Configuration

When you install NI-SCOPE on a 64-bit system, you can monitor, control, and record measurements from the PCI-5153 using InstrumentStudio.

InstrumentStudio is a software-based front panel application that allows you to perform interactive measurements on several different device types in a single program.

Note InstrumentStudio is supported only on 64-bit systems. If you are using a 32-bit system, use the NI-SCOPE-specific soft front panel instead of InstrumentStudio.

Interactive control of the PCI-5153 was first available via InstrumentStudio in NI-SCOPE18.1 and via the NI-SCOPE SFP in NI-SCOPE3.5. InstrumentStudio and the NI-SCOPE SFP are included on the NI-SCOPE media.

NI Measurement & Automation Explorer (MAX) also provides interactive configuration and test tools for the PCI-5153. MAX is included on the driver media.

TClk Specifications

You can use the NI TClk synchronization method and the NI-TClk driver to align the

Sample clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the *NI-TClk Synchronization Help*, which is located within the *NI High-Speed Digitizers Help*. For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support.

Intermodule SMC Synchronization Using NI-TClk for Identical Modules

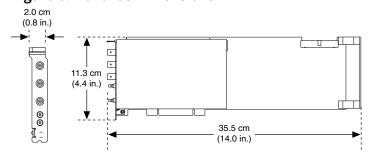
Synchronization specifications are valid under the following conditions:

- All modules are installed in one NI PXI-1042 chassis
- The NI-TClk driver is used to align the Sample clocks of each module
- All parameters are set to identical values for each module
- Modules are synchronized without using an external Sample clock
- Sample clock set to 1 GS/s and all filters are disabled

Note Although you can use NI-TClk to synchronize non-identical SMC-based modules, these specifications apply only to synchronizing identical modules.

Skew	500 ps
Skew after manual adjustment	≤5 ps
Sample clock delay/adjustment resolution	≤5 ps

Power


Current draw	
+3.3 V DC	2.5 A

+5 V DC	2.4	A
+12 V DC	250	mA
Total power		23.25 W

Physical

Dimensions	35.5 cm × 2.0 cm × 11.3 cm (14.0 in × 0.8 in × 4.4 in)
Weight	439 g (15.5 oz)

Figure 6. PCI-5153 Dimensions

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 45 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the Product Certifications and Declarations section.

CE Compliance ()

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国RoHS)

• ●●● 中国RoHS—NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs china.)