USB-6210 Specifications

Contents

SB-6210 Specifications	3
	-

USB-6210 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Typical* unless otherwise noted.

Conditions

Specifications are valid at 25 °C unless otherwise noted.

Analog Input

Number of channels	8 differential or 16 single ended
ADC resolution	16 bits
DNL	No missing codes guaranteed
INL	Refer to the <u>AI Absolute Accuracy</u>

	section			
Sample rate				
Single channel maximum			250 kS/s	
Multichannel maximum (aggreg	gate)		250 kS/s	
Minimum			0 S/s	
Timing accuracy		50 ppm of samp	ole rate	
Timing resolution		50 ns		
Input coupling		DC		
Input range		±0.2 V, ±1 V, ±5 V, ±10 V		
Maximum working voltage for a common mode)	±10.4 V of AI GND			
CMRR (DC to 60 Hz)	100 dB			
Input impedance		1		
Device on				
AI+ to AI GND	>10 G Ω in parallel with 100 pF			

AI- to AI GND >10 G Ω in parallel with 100 p			
Device off			
AI+ to AI GND	1,200 Ω		
AI- to AI GND		1,200 Ω	
Input bias current		±100 pA	
Crosstalk (at 100 kHz)			
Adjacent channels			-75 dB
Non-adjacent channels		-90 dB	
Small signal bandwidth (-3 dE	3)	450 kHz	
Input FIFO size		4,095 sampl	es
Scan list memory	4,095 entrie	5	
Data transfers	USB Signal S programme		
Overvoltage protection for all analog input and sense channels			
Device on ±30 V for up to two AI pins			

Device off	±20 V for up to two AI pins	
Input current during overvoltage condition		±20 mA maximum/Al pin

Settling Time for Multichannel Measurements

Accuracy, full-scale step, all ranges		
±90 ppm of step (±6 LSB)	4 μs convert interval	
±30 ppm of step (±2 LSB)	5 μs convert interval	
±15 ppm of step (±1 LSB)	7 μs convert interval	

Typical Performance Graphs

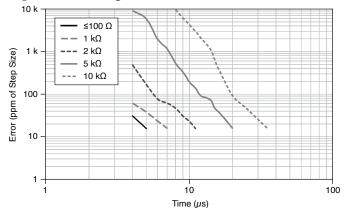


Figure 1. Settling Error versus Time for Different Source Impedances

Figure 2. AI CMRR

AI Absolute Accuracy (Warranted)

Note Accuracies listed are valid for up to one year from the device external calibration.

Note The input/output channels of this device are not protected for electromagnetic interference due to functional reasons. As a result, this device may experience reduced measurement accuracy or other temporary performance degradation when connected cables are routed in an environment with radiated or conducted radio frequency electromagnetic interference. To ensure that this device functions within specifications in its operational electromagnetic environment and to limit radiated emissions, care should be taken in the selection, design, and installation of measurement probes and cables.

Table 1. AI Absolute Accuracy

Nominal Range Positive Full Scale (V)	Nominal Range Negative Full Scale (V)	Residual Gain Error (ppm of Reading)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)	Sensitivity (μV)
10	-10	75	20	34	229	2,690	91.6
5	-5	85	20	36	118	1,410	47.2
1	-1	95	25	49	26	310	10.4

Nominal Range Positive Full Scale (V)	Nominal Range Negative Full Scale (V)	Residual Gain Error (ppm of Reading)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)	Sensitivity (µV)
0.2	-0.2	135	40	116	12	88	4.8

Note Sensitivity is the smallest voltage change that can be detected. It is a function of noise.

Gain tempco	7.3 ppm/°C
Reference tempco	5 ppm/°C
INL error	76 ppm of range

AI Absolute Accuracy Equation

AbsoluteAccuracy = Reading · (GainError) + Range · (OffsetError) + NoiseUncertainty

- GainError = ResidualAIGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal)
- OffsetError = ResidualAIOffsetError + OffsetTempco · (TempChangeFromLastInternalCal) + INLError
- NoiseUncertainty =

 $\frac{\text{Random Noise}}{\sqrt{100}} \frac{3}{3}$

for a coverage factor of 3 σ and averaging 100 points.

AI Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number_of_readings = 100
- CoverageFactor = 3σ

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

- GainError = 75 ppm + 7.3 ppm \cdot 1 + 5 ppm \cdot 10 = 132 ppm
- OffsetError = 20 ppm + 34 ppm \cdot 1 + 76 ppm = 130 ppm
- NoiseUncertainty =

```
\frac{229 \ \mu V \cdot 3}{\sqrt{100}}
```

- = 68.7 μV
- AbsoluteAccuracy = $10 V \cdot (GainError) + 10 V \cdot (OffsetError) + NoiseUncertainty = 2,690 \mu V$

Digital I/O and PFI

Static Digital I/O Characteristics

Number of digital input channels	4 (PFI <03>/P0.<03>)
Number of digital output channels	4 (PFI <47>/P1.<03>)
Ground reference	D GND
Pull-down resistor	47 kΩ ±1%

Input voltage protection	±20 V on up to 8 pins ^[1]
--------------------------	--------------------------------------

PFI Functionality

PFI <03>/Port 0				
Functionality	Static digital input, timing input			
Debounce filter settings	125 ns, 6.425 μs , 2.56 ms, disable; high and low transitions; selectable per input			
PFI <47>/Port 1				
Functionality		Static digital output, timing output		
Timing output sources		Many AI, counter timing signals		

Maximum Operating Conditions

I _{OL} output low current	16 mA maximum
I _{OH} output high current	-16 mA maximum

Digital Input Characteristics

Level	Minimum	Maximum
V _{IL} input low voltage	0 V	0.8 V

Level	Minimum	Maximum
V _{IH} input high voltage	2 V	5.25 V
I _{IL} input low current (V _{in} = 0 V)	-	-10 μA
I _{IH} input high current (V _{in} = 5 V)	_	120 μA

Digital Output Characteristics

Parameter	Voltage Level	Current Level
V _{OL}	0.6 V	6 mA
V _{OH}	2.7 V	-16 mA
V _{OH}	3.8 V	-6 mA

General-Purpose Counters/Timers

Number of counter/ timers	2
Resolution	32 bits
Counter measurements	Edge counting, pulse, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	80 MHz, 20 MHz, 0.1 MHz

External base clock frequency	0 MHz to 20 MHz
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Routing options for inputs	PFI <03>, many internal signals
FIFO	1,023 samples
Data transfers	USB Signal Stream, programmed I/O

Frequency Generator

Number of channels	1
Base clocks	10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Output can be available on any output PFI terminal.

External Digital Triggers

Source	PFI <03>
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Counter/timer function	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down

Bus Interface

USB	USB 2.0 Hi-Speed or full-speed ^[2]
USB Signal Stream	4, can be used for analog input, counter/timer 0, counter/timer 1

Current Limits

+5 V terminal as output ^[3]		
Voltage	4.6 V to 5.2 V	
Current (internally limited)	50 mA maximum, shared with digital outputs	
+5 V terminal as input ^[3]		

Voltage	4.75 V to 5.35 V
Current	350 mA maximum, self-resetting fuse

Protection	±10 V
------------	-------

Power Requirements

Input voltage on USB port	4.5 V to	5.25 V in configured state
Maximum inrush current	500 mA	
No load typical current	320 mA	at 4.5 V
Maximum load		
Typical current		400 mA at 4.5 V
Suspend current		260 μA typical

Physical Characteristics

mensions (includes connectors)	16.9 cm × 9.4 cm × 3.1 cm (6.65 in. × 3.70 in. × 1.20 in.)	
--------------------------------	--	--

Weight	206 g (7.2 oz)
I/O connectors	2 16-position combicon
USB connector	Series B receptacle
Screw terminal wiring	16 AWG to 28 AWG
Torque for screw terminals	0.22 N · m to 0.25 N · m(2.0 lb · in. to 2.2 lb · in.)

To clean the device, wipe with a dry towel.

Calibration

Recommended warm-up time	15 minutes
Calibration interval	1 year

Environmental

Operating temperature	0 °C to 45 °C
Storage temperature	-20 °C to 70 °C
Humidity	10% RH to 90% RH, noncondensing

Maximum altitude	2,000 m
Pollution Degree	2

Indoor use only.

Safety Voltages

Connect only voltages that are below these limits.

Channel-to-earth ground	11 V, Measurement Category I
-------------------------	------------------------------

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Caution Do not use for measurements within Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O (Other) are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

CE Compliance 🤇 🧲

• 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

 Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit <u>ni.com/environment/weee</u>.

电子信息产品污染控制管理办法(中国RoHS)

 ●●● 中国RoHS—NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录ni.com/environment/ rohs_china。(For information about China RoHS compliance, go to ni.com/ environment/rohs china.)