

Contents

UM Purpose	. 4
Hardware Overview	. 4
Connector Pinouts	. 5
Chassis Grounding Screw	. 5
Power Input Connectors	. 5
Ethernet Ports	. 7
USB 2.0 Ports	. 8
RS-485/422/232 Serial Port	. 8
VGA Port	10
Digital I/O	11
Wiring an Isolated Input	14
Wiring an Isolated Output	14
Connecting to Differential I/O	15
TTL I/O	16
LED Indicators	16
PoE LEDs	18
Ethernet LEDs	19
Using the RESET Button	20
(RT only) Troubleshooting Network Connectivity	21
Safe Mode	21
IP Reset	21
Software Options	22
BIOS Configuration and System Recovery	22
Entering BIOS Setup	23
BIOS Keyboard Navigation	23
Main Menu	24
Advanced Menu	24
Boot Menu	24
Save & Exit Menu	25
Restoring the NI Linux Real-Time Operating System	26
Restoring the Windows Operating System	27
Creating a Bootable USB Flash Drive	27

IC-3120 Features

Reinstalling Windows	28
Mounting the IC-3120	29
Securing the IC-3120 to a Mount	31
Clearance Requirements	32
Where to Go Next	32
NI Services	33

UM Purpose

This document contains detailed electrical and mechanical information for the National Instruments IC-3120.

© 2016 National Instruments Corporation. All rights reserved. Refer to the <National Instruments>_Legal Information directory for information about NI copyright, patents, trademarks, warranties, product warnings, and export compliance.

Hardware Overview

The IC-3120 front panel consists of a VGA port, RJ50 serial port, two USB 2.0 ports, a 10/100/1000 Ethernet port, and twoGigabit Ethernet PoE ports.

The IC-3120 front panel also includes LEDs for communicating system status and a 44-pin Digital I/O port. The Digital I/O port offers 8 isolated inputs, 8 isolated outputs, 2 bidirectional differential I/O (RS-422) or single-ended input lines that can be used with a quadrature encoder, and 8 bidirectional TTL lines.

Figure 1. IC-3120 Front Panel Connectors

- 1. VGA Connector
- 2. RS-232/RS-485 Serial Port

- 3. USB 2.0 Ports
- 4. Gigabit Ethernet Port
- 5. Gigabit Ethernet Ports with PoE
- 6. 44-pin Digital I/O Connector

Connector Pinouts

The IC-3120 provides the following connectors.

Chassis Grounding Screw

Use the grounding screw to connect the chassis to earth ground. An earth ground connection is optional.

Note An earth ground connection does not connect C or C_{ISO} to earth ground.

Figure 2. Chassis Grounding Screw

1. Chassis Grounding Screw

Power Input Connectors

The IC-3120 requires a power supply to power the system. If needed for your application, additional power sources are required to enable Power over Ethernet and to power the isolated outputs.

The same power supply may be used for both the system power and isolated outputs power if isolation is not required and the power supply meets the voltage and power requirements for both inputs. Refer to the *IC-3120 Specifications* for power requirements.

NI recommends the following power supplies for the IC-3120.

Power Supply	Part Number
NI PS-15 Industrial Power Supply, to power the system or isolated outputs	781093-01
48 V, DIN Rail, Industrial Power Supply for Power over Ethernet	783307-01
48 V, Desktop Power Supply for Power over Ethernet	783308-01

Figure 3. Power Connectors

- 1. System Power Connector
- 2. PoE Power Connector
- 3. Isolated Outputs Power Connector

Table 1. Power Connector Terminals

Terminal	Description
С	Common signal
V	System power (12-24 VDC)

Terminal	Description
C ISO	Isolated common signal
V ISO	Power for isolated outputs (5-24 VDC)
C PoE	PoE common signal
V PoE	PoE power (48 VDC)

Ethernet Ports

The IC-3120 provides 3 Gigabit Ethernet ports. PoE PORT 0 and PoE PORT 1 are capable of providing Power over Ethernet (PoE). The Ethernet ports provides a connection between the IC-3120, a network, and other Ethernet devices. The IC-3120 automatically detects the speed of the connection and configures itself accordingly.

The IC-3120 can power PoE-capable devices when a PoE power supply is connected. When the IC-3120 supplies PoE, the LED that corresponds to the port illuminates. You can use non-PoE Ethernet devices with the PoE-enabled Ethernet ports.

A CAT 5e or CAT 6 1000Base-T Ethernet cable is required to achieve 1,000 Mbps (Gigabit) Ethernet performance. CAT 5 Ethernet cables are not guaranteed to meet the necessary requirements. While CAT 5 cables may appear to work at 1,000 Mbps, CAT 5 cables can cause bit errors, resulting in degraded or unreliable network performance.

(Windows only) The primary Gigabit Ethernet port provides Wake-on-LAN functionality from the power off state when associated with the Intel[®] driver. Wake-on-LAN must be enabled in the Power Management tab of the Intel I210 Gigabit Network Connection Properties dialog for the primary Ethernet port in Device Manager. The NI GigE Vision driver (NI-GEV) does not support Wake-on-LAN. The PoE Ethernet ports do not support Wake-on-LAN.

Figure 4. Ethernet Port Pin Locations

Dim	Din Fast Ethornat (100 Mhns)	Gigabit I	Ethernet
PIN	Fast Ethernet (100 Mbps)	MDI	MDI-X
1	TX+	BI_DA+	BI_DB+
2	TX-	BI_DA-	BI_DB-
3	RX+	BI_DB+	BI_DA+
4	No Connect	BI_DC+	BI_DD-
5	No Connect	BI_DC-	BI_DD-
6	RX-	BI_DB-	BI_DA-
7	No Connect	BI_DD+	BI_DC+
8	No Connect	BI_DD-	BI_DC-

Table 2. Ethernet Port Pin Descriptions

USB 2.0 Ports

The USB ports support common USB peripheral devices such as USB flash drives, USB hard drives, USB-to-IDE adapters, keyboards, mice, and USB cameras.

(RT only) LabVIEW usually maps USB mass-storage devices to the /U, /V, /W, or /X drive, starting with the /U drive if it is available. Refer to the *LabVIEW Help* for more information.

Figure 5. USB 2.0 Pin Locations

Table 3. USB 2.0 Port Pin Descriptions

Pin	Signal Name	Signal Description
1	VBUS	Cable Power (+5 VDC)
2	D-	USB Data -
3	D+	USB Data +
4	GND	Ground for power return

RS-485/422/232 Serial Port

The IC-3120 has a single serial port that can operate in either RS-485/422 mode or RS-232 mode. Set the serial port mode in the BIOS setup utility.

The serial port is a 10-position RJ50 modular jack, which can connect to serial devices, such as PLCs, scanners, and lighting devices.

NI recommends the following serial cables for the IC-3120.

Cable	Part Number
RJ50 10-position modular plug to DB-9 serial cable	182845-01 for 1 meter cable
	182845-02 for 2 meter cable
	182845-03 for 3 meter cable

Figure 6. RS-485/422/232 Serial Port Pin Locations

Table 4. RS-485/422/232 Serial Port Pin Descriptions

Pin	RS-485/422 Mode	RS-232 Mode
1	No Connect	No Connect
2	TXD-	Unused
3	TXD+	Unused
4	No Connect	No Connect
5	No Connect	No Connect
6	RXD-	GND
7	RXD+	Unused
8	Unused	TXD
9	Unused	RXD

Pin	RS-485/422 Mode	RS-232 Mode
10	GND	GND

Related concepts:

• Serial Port Configuration Submenu

VGA Port

Use the VGA port to connect a monitor to the IC-3120. Use any standard 15-pin VGA cable to access the VGA port. The VGA port has a maximum resolution of 1920 x 1200 at 60 Hz.

Figure 7. VGA Port Pin Locations

Pin	Signal Name	Signal Description
1	RED	Red analog video signal
2	GREEN	Green analog video signal
3	BLUE	Blue analog video signal
4	RESERVED	Reserved
5	GND	Ground reference
6	RED RETURN	Ground reference
7	GREEN RETURN	Ground reference
8	BLUE RETURN	Ground reference
9	PWR	5 V power for DDC
10	GND	Ground return for power
11	NC	No connect

Pin	Signal Name	Signal Description
12	DDC_D	Data signal of serial communication
13	HSYNC	Horizontal synchronization signal
14	VSYNC	Vertical synchronization signal
15	DDC_C	Clock signal of serial communication

Digital I/O

The 44-pin Digital I/O port on the IC-3120 offers 8 isolated inputs, 8 isolated outputs, 2 bidirectional differential inputs (RS-422) or single-ended input lines that can be used with a quadrature encoder, and 8 bidirectional TTL lines. The Digital I/O port can be connected to any appropriate shielded device or connector block using a shielded cable.

NI recommends the following digital I/O cables for the IC-3120.

Cable	Part Number
44-pin D-sub male to pigtail cable	156083-03 for 3 meter cable
44-pin D-sub male to 44-position D-sub female	156084-03 for 3 meter cable
cable	156084-0R5 for 0.5 meter cable

Refer to the following image and table for pin locations and descriptions.

Figure 8. 44-pin Digital I/O Connector Pin Locations

Table 5. Digital I/O Pin Descriptions

Pin Number	Signal	Description
1	Diff 0+	Bidirectional RS-422 I/O

Pin Number	Signal	Description
		(positive side), or quadrature encoder phase A+
2	GND	Digital ground reference for TTL and differential I/O
3	TTL 0	Bidirectional TTL I/O
4	TTL 1	Bidirectional TTL I/O
5	GND	Digital ground reference for TTL and differential I/O
6	TTL 2	Bidirectional TTL I/O
7	TTL 3	Bidirectional TTL I/O
8	GND	Digital ground reference for TTL and differential I/O
9	Diff 1+	Bidirectional RS-422 I/O (positive side), or quadrature encoder phase B+
10	V _{ISO}	Isolated power voltage reference output
11	C _{ISO}	Common ground reference for isolated inputs and outputs
12	Iso Out 0	General purpose isolated input
13	Iso Out 1	General purpose isolated input
14	C _{ISO}	Common ground reference for isolated inputs and outputs
15	Iso Out 4	General purpose isolated output
16	Diff 0-	Bidirectional RS-422 I/O (negative side), or quadrature encoder phase A-
17	GND	Digital ground reference for TTL and differential I/O
18	TTL 4	Bidirectional TTL I/O
19	TTL 5	Bidirectional TTL I/O

Pin Number	Signal	Description
20	GND	Digital ground reference for TTL and differential I/O
21	TTL 6	Bidirectional TTL I/O
22	TTL 7	Bidirectional TTL I/O
23	GND	Digital ground reference for TTL and differential I/O
24	Diff 1-	Bidirectional RS-422 I/O (negative side), or quadrature encoder phase B-
25	V _{ISO}	Isolated power voltage reference output
26	C _{ISO}	Common ground reference for isolated inputs and outputs
27	Iso Out 2	General purpose isolated output
28	Iso Out 3	General purpose isolated output
29	C _{ISO}	Common ground reference for isolated inputs and outputs
30	Iso Out 5	General purpose isolated output
31	lso In 0	General purpose isolated input
32	iso In 1	General purpose isolated input
33	C _{ISO}	Common ground reference for isolated inputs and outputs
34	lso ln 2	General purpose isolated input
35	lso In 3	General purpose isolated input
36	C _{ISO}	Common ground reference for isolated inputs and outputs
37	lso ln 4	General purpose isolated input
38	lso ln 5	General purpose isolated input

Pin Number	Signal	Description
39	C _{ISO}	Common ground reference for isolated inputs and outputs
40	lso In 6	General purpose isolated input
41	lso In 7	General purpose isolated input
42	C _{ISO}	Common ground reference for isolated inputs and outputs
43	Iso Out 6	General purpose isolated output
44	Iso Out 7	General purpose isolated output

Wiring an Isolated Input

You can wire an isolated input to a sourcing output device.

Caution Do not apply a voltage greater than 24 VDC to the isolated inputs. Voltage greater than 24 VDC may damage the IC-3120.

Figure 9. Connecting an Isolated Input to a Sourcing Output Device

Wiring an Isolated Output

The digital output circuit sources current to external loads.

Caution Do not draw more than 35 mA each from 5 V isolated output. Do not draw more than 80 mA each from 24 V isolated outputs.

Figure 10. Connecting an Isolated Output to an External Load

Connecting to Differential I/O

The IC-3120 accepts differential (RS-422) line driver inputs. Each of the 2 differential I/O can be configured as an output. Use shielded cables for all applications. Unshielded cables are more susceptible to noise and can corrupt signals.

Figure 11. Quadrature Encoder/RS-422 Input/Output Circuit

Figure 12. Connecting Differential Line Drivers

Figure 13. Connecting Single-Ended Line Drivers External Device Industrial Controller

TTL I/O

The following image shows the circuit for bidirectional TTL I/O.

Figure 14. TTL Input/Output Circuit

LED Indicators

The IC-3120 provides the following LED indicators.

Figure 15. LED Indicators

The following table describes the LEDs and indications.

Table 6. LED Indications

LED	LED Color	LED State	Indication
STATUS Ye		OFF	The IC-3120 initialized successfully and is ready for use.
	Yellow	2 blinks	(RT only) There is no software installed, which is the out-of-box state, or the IC-3120 has detected an error in its software. The device has automatically started up into safe mode. This usually occurs when an attempt to upgrade the software is interrupted or if system files are deleted from the IC-3120. Reinstall software on the IC-3120.
		3 blinks	(RT only) The IC-3120 has booted into safe mode. Refer to the Safe Mode section for information about the safe mode state.
		4 blinks	(RT only) The IC-3120 has experienced two consecutive software exceptions. The IC-3120 automatically restarts after an exception. After the second exception, the IC-3120 remains in the exception state, alerting you to resolve the problem. Reinstall software on the IC-3120 or

LED	LED Color	LED State	Indication
			contact NI for assistance. Refer to the <i>IC-3120</i> <i>Getting Started Guide</i> for information about installing software on the IC-3120.
		Continuous blinking	(RT only) The IC-3120 has not booted into NI Linux Real-Time. The controller either booted into an unsupported operating system, was interrupted during the boot process, or detected an unrecoverable software error.
Solid		Solid	(RT only) The IC-3120 is booting up. (Windows only) An internal drive is being accessed.
	_	OFF	The IC-3120 is OFF. This is not an indication of whether power is applied or not.
PWR/FAULT	Green	Solid	The IC-3120 is operating normally and is properly powered on.
	Red	Blinking	The IC-3120 power-up sequence failed.
USER1/USER2	Green/ Yellow		User-controlled LEDs that can be controlled using the NI System Configuration API.

Related concepts:

• <u>Safe Mode</u>

PoE LEDs

The following figure shows the location of the PoE0 and PoE1 LEDs.

Figure 16. PoE LEDs

The following table describes the PoE LED indications.

Table 7. PoE LED Indications

PoE LED State	PoE Status	
OFF	The corresponding PoE port is not supplying power.	
ON The corresponding PoE port is powering the connected device.		

Ethernet LEDs

The following figure shows the locations of the LEDs for PoE PORT 0 and PoE PORT 1.

Figure 19. LEDs for Ethernet Ports with PoE

- 1. Port 0 Speed LED
- 2. Port 0 Activity/Link LED
- 3. Port 1 Speed LED
- 4. Port 1 Activity/Link LED

The following figure shows the locations of the LEDs for the network Gigabit Ethernet port.

Figure 18. LEDs for the Network Gigabit Ethernet Port

1. Activity/Link LED

2. Speed LED

Refer to the following table for information about the Ethernet LED indications.

 Table 8. Ethernet LED Indications

LED	Status	Indication
	OFF	No link has been established
Activity/Link	Solid	A link has been negotiated
	Blinking	Activity on the link
	OFF	No link, or 10 Mbps link
Speed	Green	100 Mbps link
	Amber	1,000 Mbps link

Using the RESET Button

Pressing the RESET button resets the processor and reboots the system.

Figure 19. RESET Button Locations

1. RESET Button

(RT only) Troubleshooting Network Connectivity

Use the RESET button to troubleshoot network connectivity.

- 1. Hold the RESET button for 5 seconds, and then release it to boot the IC-3120 into safe mode.
- 2. After booting the controller into safe mode, hold the RESET button again for 5 seconds to enable IP reset, which resets the network adapter to its default configuration.

Safe Mode

When you boot the IC-3120 into safe mode, it launches only the services necessary for updating its configuration and installing software. To resume normal operations, press the RESET button for less than 5 seconds.

IP Reset

Use IP reset to reset the TCP/IP settings when moving the system from one subnet to another or when the current TCP/IP settings are invalid.

When the IC-3120 is in the IP reset state, the IP address of the network port resets to DHCP or a link-local address. You can then set up a new network configuration for the

IC-3120 from a development machine on the same subnet, or you can connect the IC-3120 directly to the development computer.

Note By default, the target automatically attempts to connect to the network using DHCP. If the target is unable to initiate a DHCP connection, the target connects to the network with a link-local IP address (169.254.x.x).

Software Options

Use the following software to develop applications with the IC-3120. Refer to the *IC-3120 Getting Started Guide* for information about installing software.

- NI Industrial Controller Device Drivers 15.5 or later driver software.
- One of the following options for developing machine vision applications:
 - LabVIEW 2014 SP1 or later, LabVIEW Real-Time 2014 SP1 or later, the NI Vision Development Module 2015 SP1 or later.
 - NI Vision Builder for Automated Inspection (Vision Builder AI) 2015 or later.
- Software for using and reconfiguring the IC-3120 FPGA. Different configurations are referred to as hardware personalities, and are defined by bitfiles. NI Industrial Controller Device Drivers include a reconfigurable I/O personality that you can use out of the box. Install the following software if you need to compile a custom personality for your application:
 - LabVIEW 2014 SP1 or later and LabVIEW FPGA Module 2014 SP1 or later—You must install the LabVIEW FPGA Module to reconfigure the default personality of the IC-3120 FPGA.

BIOS Configuration and System Recovery

You can change the configuration settings for the IC-3120 in the BIOS setup utility. The BIOS is the low-level interface between the hardware and PC software that configures and tests your hardware when you boot the system. The BIOS setup utility includes menus for configuring settings and enabling features.

Most users do not need to use the BIOS setup utility. The system ships with default

settings that work well for most configurations.

Entering BIOS Setup

Complete the following steps to start the BIOS setup program.

- 1. Connect a monitor to the VGA connector on the IC-3120.
- 2. Connect a USB keyboard to one of the USB ports on the IC-3120.
- 3. While holding down the <Delete> key, power on or reboot the IC-3120.

The IC-3120 will enter the BIOS setup program and display the Main menu.

BIOS Keyboard Navigation

Use the following keys to navigate through the BIOS setup:

- Left, right, up, and down arrows—Use these keys to move between different setup menus. Press <Esc> to exit a submenu. Be sure number lock is off to use the numeric keypad arrows.
- <Enter>—Use this key to either open a submenu or display all available settings for the highlighted configuration option.
- <Esc>—Use this key to return to a parent menu of a submenu or cancel an outstanding selection. At the main menu, use this key to exit the BIOS setup.
- <+> and <->—Use these keys to cycle between all available settings.
- <Tab>—Use this key to select time and date fields. When entering date and time and date information, you can also use the number keys to enter the time and date directly.
- <F9>—Use this key to load the optimal default values for BIOS configuration settings. The optimal default values are the same as the shipping configuration default values.

Press <F1> from any root menu to display more information about navigating the BIOS setup program.

Menu items listed in blue are changeable; menu items in gray are not changeable. A blue triangle next to a menu item indicates that the menu item contains a submenu.

Main Menu

The most commonly accessed and modified BIOS settings are in the Main setup menu.

- System Date—Changes the system date. The system date setting is stored in a batter-backed real-time clock. You can also change this setting from within MAX or Vision Builder AI.
- System Time—Changes the system time. The system time setting is stored in a battery-backed real-time clock. You can also change this setting from within MAX or Vision Builder AI.

Advanced Menu

This menu contain BIOS settings that normally do not require modification. If you have specific problems such as unbootable disks or resource conflicts, you may need to examine these settings.

The Advanced setup menu includes the following submenus:

- Power/Wake Configuration
- Serial Port Configuration
- SATA Configuration
- USB Configuration

Boot Menu

This screen displays the boot order of devices associated with the IC-3120. The BIOS proceeds down the **Boot priority order list** in search of a bootable device. Devices under the **Excluded from boot order** list will not be used for booting. If the BIOS fails to find any bootable device, an error message is displayed.

The Boot setup menu includes the following submenus:

- Boot Settings Configuration—Use this setting to access the **Boot Settings Configuration** submenu.
- PXE Network Boot—This setting specifies whether or not the PXE network boot

agent is enabled. When this setting is enabled, the Intel Boot Agent is displayed in the **Boot Option Priorities** menu, allowing you to boot from a PXE server on the local subnet. Note that the Intel Boot Agent device names are preceded by **IBA GE Slot** in the **Boot Option Priorities** menu. The system must be restarted for this setting to take effect. The default value is **Disabled**.

 Boot Option Priorities—These setting specify the order in which the BIOS checks for bootable devices, including the local hard disk drive, removable devices such as USB flash disk drives or USB CD-ROM drives, or the PXE network boot agent. The BIOS will first attempt to boot from the device associated with Boot Option #1, followed by Boot Option #2 and Boot Option #3. If multiple boot devices are not present, the BIOS setup utility will not display all of these configuration options. To select a boot device, press <Enter> on the desired configuration on the desired configuration option and select a boot device from the resulting menu. You can also disable certain boot devices by selecting Disabled.

Note Only one device of a given type will be shown in this list. If more than one device of that same type exists, use the Device BBS Priorities submenus to re-order the priority of devices of the same type.

Save & Exit Menu

The Save & Exit setup menu includes all available options for exiting, saving, and loading the BIOS default configuration. You can also press <F9> to load BIOS default settings and <F10> to save changes and exit setup.

The Save & Exit setup menu includes the following settings:

- Save Changes and Reset—Any changes made to BIOS settings are stored in NVRAM. The setup utility then exits and reboots the controller.
- Discard Changes and Reset—Any changes made to BIOS settings during this session since the last save are discarded. The setup utility then exits and reboots the controller.
- Save Changes—Any changes made to BIOS settings during this session are committed to NVRAM. The setup utility remains active, allowing further changes.
- Discard Changes—Any changes made to BIOS settings during this session since the last save are discarded. The BIOS setup continues to be active.

- Restore Defaults—This option restores all BIOS settings to the factory default. This
 option is useful if the controller exhibits unpredictable behavior due to an
 incorrect or inappropriate BIOS setting. The <F9> key can also be used to select
 this option.
- Save as User Defaults—This option saves a copy of the current BIOS settings as the User Defaults. This option is useful for preserving custom BIOS setup configurations.
- Restore User Defaults—This option restores all BIOS settings to the values last saved as user defaults.
- Boot Override—This option lists all possible bootable devices and allows the user to override the **Boot Option Priorities** list for the current boot. If no changes have been made to the BIOS setup options, the system will continue booting to the selected device without first rebooting. If BIOS setup options have been changed and saved, a reboot is required and the boot override selection will not be valid.

Restoring the NI Linux Real-Time Operating System

Complete the following steps to restore the NI Linux Real-Time operating system to its factory default condition. These steps do not restore the BIOS settings to factory default. Use the **Restore Defaults** option in the **Save & Exit Menu** of the BIOS setup utility to restore the BIOS settings.

- 1. Start the IC-3120 in safe mode. To start in safe mode, apply power, turn on the device, press the RESET button for more than 5 seconds, then release the button.
- 2. Launch NI MAX on the development computer.
- 3. In the MAX configuration tree, expand **Remote Systems**.
- 4. Right-click the name of the IC-3120 you want to restore and select **Format Disk**.
- 5. Enter the username and password for the device. By default, the username is admin and the password field is blank.
- 6. Click Format.
- 7. After formatting is complete, a confirmation dialog window appears. Click **Close**.
- 8. Refer to the *IC-3120 Getting Started Guide* for information about installing software and configuring the device.

Related concepts:

• <u>Safe Mode</u>

Restoring the Windows Operating System

You can restore the Windows operating system on the hard drive of the IC-3120 from the reinstallation DVD shipped with device.

Note Restoring the operating system erases the contents of the hard drive. Back up any files you want to keep before restoring the hard drive.

Creating a Bootable USB Flash Drive

You can create a bootable USB flash drive from the reinstallation DVD if you do not have a USB DVD drive to connect to the IC-3120. The USB flash drive must be at least 8 GB. Ensure the USB flash drive appears as a Removable Drive in Windows. Avoid using drives that appear as Fixed Disk drives. Complete the following steps to prepare the USB flash drive for recovery.

Note If you have an external USB DVD drive, you can use the external DVD drive to restore Windows without creating a bootable USB flash drive. Proceed to the next section if you are using an external DVD drive.

- 1. Insert the USB flash drive into a computer with a DVD drive running Windows, and wait for the flash drive to be recognized.
- 2. Open a command prompt as an administrator.
- 3. Type diskpart.exe and press <Enter>.
- 4. Type list disk and press <Enter>.
- 5. Identify the drive number that corresponds to the USB flash drive.
- 6. Type select disk x, where x is the drive number of the USB flash drive, and press <Enter>. For example, in the following image, the USB flash drive is disk number 5. The command is select disk 5.

	C:\Windows\system32\diskpart.exe - 🗆 🗙				
DISKPART> L	ist Disk				^
Disk ###	Status	Size	Free	Dyn	Gpt
Disk Ø Disk 1 Disk 2 Disk 3 Disk 5	Online Online Online Online Online Online	465 GB 465 GB 465 GB 465 GB 465 GB 14 GB	1024 KB 4096 KB 4096 KB 1024 KB 0 B		
DISKPART> S	elect Disk 5				
Disk 5 is n	ow the selected	disk.			
DISKPART> L	ist Disk				
Disk ###	Status	Size	Free	Dyn	Gpt
Disk Ø Disk 1 Disk 2 Disk 3 * Disk 5	Online Online Online Online Online Online	465 GB 465 GB 465 GB 465 GB 14 GB	1024 KB 4096 KB 4096 KB 1024 KB 0 B		
DISKPART>					×

Caution Following this process will delete all data on the USB flash drive.

- 7. Type clean and press <Enter>. This command deletes all data from the USB flash drive.
- 8. Type create partition primary and press <Enter>.
- 9. Type active and press <Enter>
- 10. Type format fs=ntfs quick and press <Enter> to format the USB flash drive.
- 11. Type assign letter free volume letter, where free volume letter is a letter not currently associated with any disk drives. For example, assign letter K.
- 12. Copy the contents of the reinstallation DVD to the root of the USB flash drive. The USB flash drive is now bootable and will install Windows.

Reinstalling Windows

Complete the following steps to use the recovery media to install Windows.

- 1. Connect the bootable USB flash drive to one of the USB ports on the IC-3120. Or connect an external DVD drive to one of the USB ports on the IC-3120 and insert the recovery DVD into the external drive.
- 2. Connect a USB hub to the other USB port on the IC-3120. Connect a keyboard and mouse to the USB hub. If a USB hub is not available, the keyboard can be used to navigate the recovery software.
- 3. Power on the IC-3120.

- 4. Press the <F10> key on the keyboard.
- 5. Select the bootable USB flash drive or the DVD drive.
- 6. Press any key to boot from the recovery media.
- 7. Follow the on-screen instructions to format the hard drive and install the operating system.

After restoring the operating system, reinstall any software and drivers onto the IC-3120.

Mounting the IC-3120

This section provides information for creating a custom mount for the IC-3120. If you do not want to create a custom mount, a panel and DIN rail mount kit for the IC-3120 is available from National Instruments (part number 781740-01).

Caution If you choose not to mount the IC-3120 on a DIN rail or flat surface, do not position the IC-3120 with the heat sinks resting on any surface. Doing so may cause the IC-3120 device to overheat. Refer to the *IC-3120 Specifications* for temperature specifications.

The following figures provide dimensional drawings and clearance information for the IC-3120.

Figure 20. Front View with Dimensions in inches [millimeters]

Figure 21. Back View with Dimensions in inches [millimeters]

Figure 22. Side View with Dimensions in inches [millimeters]

Figure 23. Bottom View with Dimensions in inches [millimeters]

Securing the IC-3120 to a Mount

- 1. Align the screw holes of the mounting bracket with the two holes on the back of the IC-3120.
- 2. Insert two 6-32 screws and tighten them until they are secure (3.5 in-lb). Make sure the heads of the screws are flush with the mounting bracket.

Clearance Requirements

The IC-3120 installation must meet the following space and cabling clearance requirements for optimum cooling:

- Allow 76.2 mm (3.0 in.) on the top and bottom of the IC-3120 for air circulation.
- Allow 50.8 mm (2.0 in.) on the sides of the IC-3120 for air circulation.
- Allow enough space in front of the IC-3120 to connect cables.

Figure 24. Clearance Requirements for the IC-3120

Where to Go Next

The following documents and resources contain information you may find helpful as you use the IC-3120 in an application. Refer to the National Instruments Product

Manuals Library at <u>ni.com/manuals</u> for the most recent versions of product documentation.

- *IC-3120 Specifications*—Contains detailed specifications for the IC-3120.
- *IC-3120 Getting Started Guide*—Explains how to install and configure the software necessary to use the IC-3120, and how to get started using the hardware.
- *NI CVS I/O Accessory User Manual*—Contains installation and operation instructions for the NI CVS I/O Accessory.

NI Services

Visit <u>ni.com/support</u> to find support resources including documentation, downloads, and troubleshooting and application development self-help such as tutorials and examples.

Visit <u>ni.com/services</u> to learn about NI service offerings such as calibration options, repair, and replacement.

Visit <u>ni.com/register</u> to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 N Mopac Expwy, Austin, TX, 78759-3504, USA.