入门指南和接线盒规范

PXIe-4310 和 TB-4310 (10V)/TB-4310 (600V)

8 通道、16 位、400 kS/s/ch、通道间隔离模拟输入模块

Français Deutsch 日本語 한국어 简体中文

本文档介绍了使用 TB-4310 (10V)/TB-4310 (600V) 接线盒安装、配置和设置 PXIe-4310 模块的方法。 NI-DAQmx 17.1 最早提供对 PXIe-4310 的驱动支持。关于特定版本支持的设备列表,请参考具体版本下载页面或安装光盘中的 NI-DAQmx 自述文件。

注 接线盒的定位设计可防止接入其他模块,避免接线盒上的电压对其造成 损害。但是,用户应该仅在接线盒上使用支持的模块。

注意 接线盒未连接到 PXIe-4310 时,请不要将危险电压 (>30 $V_{rms}/42.4 V_{pk}/60$ VDC) 提供给接线盒。

注意 该符号提醒用户采取预防措施,防止受伤、数据丢失或系统崩溃。

目录

电磁兼容性指南	2
危险电压安全守则	
使用须知	3
安装	4
安装软件	
拆开产品包装并安装模块	4
连接信号	6
安装接线盒	
确认 PXIe-4310 模块识别	10
设备自校准	
运行测试面板	
进行 NI-DAQmx 测量	
NI-DAQmx 通道和任务	12
在 MAX 中使用 DAQ 助手配置任务	
在应用程序中使用 PXIe-4310 模块	13
编程范例	13

13
14
15
16
16
17
17
17
17
18
18
18
19
19
19
20
20
20
20
20
21
21
22
22
22
22

电磁兼容性指南

经测试,产品符合电磁兼容性 (EMC) 要求和限制,详情见产品规范。产品在电磁环境 中工作时,这些要求和限制旨在提供合理防护,防止有害干扰。

本产品适用于工业环境,但在某些安装环境下使用可能产生有害干扰,如产品连接至外 设、测试对象或用于住宅区或商业区。如要最小化广播电视接收干扰及避免设备性能降 低至不可接受的程度,请严格按照产品文档安装和使用本产品。

此外,未经 NI 明示许可,用户不得对产品进行任何改动,否则将在法律上丧失操作本 设备的权利。

注意 如要确保指定的 EMC 性能,必须使用屏蔽式线缆和套件操作本产品。 只能使用屏蔽双绞线 (Belden 83319 或同等产品)进行通道连接。有关连接 线缆屏蔽的具体指南,请参阅 PXIe-4310 用户手册。

危险电压安全守则

模块连接危险电压时,请采取下列防范措施。危险电压是指峰值电压高于 42.4 Vnk 的 交流电压或高于60 V的直流电压。

注意 确保危险电压的连接由具有当地电气安全资质的专业人士完成。

注意 必须根据当地安全规范和标准以及制造商提供的规格安装配套连接 器。您有责任根据相关标准 (包括北美的 UL 和 CSA 以及欧洲的 IEC 和 VDE) 验证第三方连接器的安全合规性及其使用情况。

注意 确保人体与设备及连至该模块的电路有效隔离。

注意 模块端子接通危险电压 (>42.4 $V_{\rm pk}$ /60 VDC) 时,应确保人体与设备及 连至该模块的电路有效隔离。

注意 请勿将危险电压电路和人体可接触电路放置在同一模块内。

使用须知

要设置和使用带有 TB-4310 (10V)/TB-4310 (600V) 接线盒的 PXIe-4310 模块,需要以 下各项:

- П 硬件
 - PXIe-4310 模块
 - TB-4310 (10V)/TB-4310 (600V) 接线盒
 - PXI Express 机箱
 - 实际应用所需的线缆及传感器
- □ 工具
 - 1、2号飞利浦螺丝刀
 - 1/8 英寸平口螺丝刀
 - 尖嘴钳
 - 异线切刀
 - 绝缘剥线钳
- 口 文档
 - PXIe-4310 和 TB-4310 (10V)/TB-4310 (600V) 入门指南和接线盒规范
 - PXIe-4310 用户手册
 - PXIe-4310 产品规范
 - PXI Express 机箱用户手册

用户可通过 ni.com/manuals 下载所需的文档。

安装软件

注 必须以管理员身份登录, 才可在计算机上安装 NI 软件和设备。

安装 PXIe-4310 和 TB-4310 (10V)/TB-4310 (600V) 硬件之前,请线确保安装了以下软 件:

- 1. 应用程序软件,如 LabVIEW、 LabWindows™/CVI™ 或 .NET。
- NI-DAOmx NI-DAOmx 17.1 最早提供对 PXIe-4310 模块的支持。

注 关于 NI 软件版本支持的详细信息,请参考 NI-DAOmx 自述文件。升级 软件或修改应用程序前应备份应用程序。

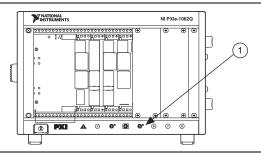
拆开产品包装并安装模块

打开产品包装并检查模块。如模块破损,请联系 NI。请勿安装已损坏的模块。

注意 本模块为静电敏感设备,取放或连接模块时,请确保人体和设备已采 用正确的接地措施。

请参考图 1 和图 2,按照下列步骤安装 PXIe-4310 模块:

注 如要保持 PXI Express 系统的强制风冷, 见 Maintain Forced-Air Cooling Note to Users.


- 安装 PXIe-4310 之前插入机箱。电源线将机箱接地,并防止机箱在安装模块时受 到电气损害。
- 2.. 确保已关闭机箱电源。

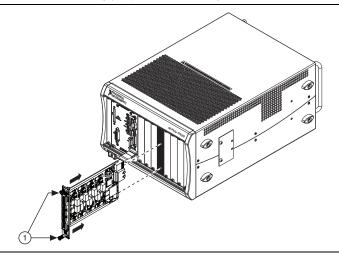
注意 为保护用户、机箱及 PXIe-4310 免受电气伤害,请在完成 PXIe-4310 模块安装前将机箱保持在断电状态。

3. 触摸机箱的金属部分,以释放静电。 4. 在机箱中找到可用的 PXIe 插槽。 PXIe-4310 模块只能放置在表 1 所列支持的插槽 类型中。图 1显示了各种插槽类型的插槽类型符号。详细信息见机箱文档。

图 1. PXIe/PXI 机箱插槽类型符号位置

插槽类型符号位置

表 1. PXIe-4310 支持的插槽类型


PXI 机箱插槽类型符号	支持的插槽类型说明
•	PXIe 外设
● ^H	PXI/PXIe 混合外设
	PXIe 系统定时或 PXIe 外设

- 5. 移除填充板,触摸机箱的金属部分,以释放静电。
- 6. 将模块沿两边插入机箱上的上下滑槽。

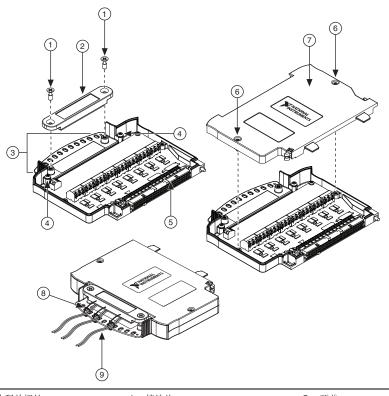
注意 安装时,请确保模块的边沿位于滑槽内,且模块的组件不会接触到相 邻的模块。

- 7. 沿滑槽滑动模块,直至接触到后部的连接器,然后推动模块前面板,直至与机箱前 面板完全平齐。
- 使用模块前面板上的紧固螺丝,将设备固定在机箱上,如图 2 所示。拧紧螺丝, 扭矩为 0.31 N·m (2.7 lb·in.)。
- 9. 在空插槽中安装填充板。

1 紧固螺丝

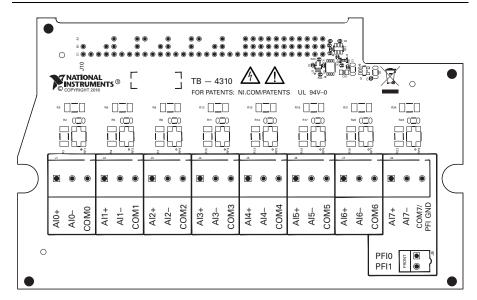
连接信号

注意 如要确保指定的 EMC 性能,必须使用屏蔽式线缆和套件操作本产品。 只能使用屏蔽双绞线进行通道连接。有关连接线缆屏蔽的具体指南,请参阅 PXIe-4310 用户手册。


注意 接线盒未连接到 PXIe-4310 时,请不要将危险电压 (>30 V_{mm}√ 42.4 V_{pk}/60 VDC) 提供给接线盒。

需要一个接线盒来连接模块。要将信号连接到 TB-4310 (10V)/TB-4310 (600V),请参 考图 3 和 4 完成以下步骤:

注 右键单击**设备和接口**下的设备名称并选择**设备引脚**,可随时在 Measurement & Automation Explorer (MAX) 中找到引脚名称和位置。


- 1. 松动固定顶盖螺丝并取下顶盖。
- 松动应力释放螺丝并取下应力释放条。
- 剥去不超过 8 mm (0.24 in.) 的绝缘层,准备屏蔽信号线。 3.
- 4. 将屏蔽信号线穿过应力释放开口。

- 应力释放螺丝
- 应力释放条
- 扎带孔

- 接地片
- 5 接线盒至模块连接器
- 6 固定顶盖螺丝

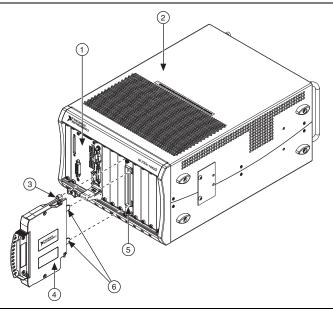
- 7 顶盖
- 8 扎带
- 9 屏蔽信号线
- 5. 将屏蔽信号线的剥离端完全插入相应的端子。请参考每个螺栓端子旁边的标签以确 定端子的功能。 PXIe-4310 用户手册提供了更详细的接线信息。确保没有裸露的导 线穿过螺栓端子。裸露的导线会增加短路风险,可能导致电路故障。

注 有关如何将传感器连接到 TB-4310 (10V)/TB-4310 (600V) 的接线图,请 参考 PXIe-4310 用户手册。

拧紧螺栓端子, 扭矩为 $0.2 \sim 0.25 \text{ N} \cdot \text{m} (1.77 \sim 2.21 \text{ lb} \cdot \text{in.})$ 。

注意 连接到接地片的任何导线必须与高压绝缘。

注 关于屏蔽信号的更多信息,见 PXIe-4310 用户手册。


- 7. 重新安装应力释放条并紧固应力释放螺丝。
- 8. 使用扎带将屏蔽信号线连接到扎带孔,以便在必要时额外释放应力。
- 9. 重新安装顶盖并拧紧固定顶盖螺丝。

安装接线盒

要在模块上安装接线盒,请参考图 5 完成以下步骤:

将接线盒移动到模块前面的位置,并将对齐点与相关模块上的导轨啮合。

图 5. 在模块上安装接线盒

- PXI Express 控制器
- 2 PXI Express 机箱

3 固定螺丝 模块

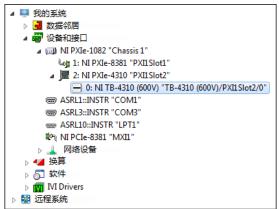
4 接线盒

- 6 对齐点
- 2. 将接线盒直接推入模块,将接线盒连接到模块上。弹簧机制将在接线盒底部锁定。
- 3. 拧紧接线盒顶部的固定螺钉,将其连接到模块上。

注 为防止高电压情况下出现安全问题及损坏设备,所有 PXIe-4310 模块和 TB-4310 (10V)/TB-4310 (600V) 接线盒均采用配对机制,以防止不兼容的接 线盒、模块和/或线缆之间相互连接。

4. 为机箱上电。

确认 PXIe-4310 模块识别


请按照下列步骤,确认模块识别:

- 1. 为系统上电。
- 2. 启动 MAX。

展开**设备和接口**,接着展开模块所在的机箱,确认 MAX 检测到模块及接线盒。接 3. 线盒应位于相关模块的下面。如未显示模块或接线盒,可按下 <F5> 刷新 MAX。 如仍未识别模块, 请访问 ni.com/support/dagmx。

提示 借助 NI-DAOmx 仿真设备,无需安装硬件就可测试 NI-DAOmx 应用 程序。关于创建 NI-DAOmx 仿真设备的说明,请参考 创建仿真设备部分。

右键单击模块名称,选择**自检**。自检完成后,将出现确认信息。如提示出错,请访 问 ni.com/support/dagmx。

设备自校准

NI 建议在安装后以及环境温度变化时对 PXIe-4310 模块进行自校准。设备根据建议时 间预热后,应执行自校准。请参阅设备产品规范以查找设备预热时间。该功能测量设备 的板载参考电压,并调整自校准常量,消除由操作环境短期变化引起的误差。

请完成下列步骤,使用 Measurement & Automation Explorer (MAX) 启动自校准:

- 1. 启动 MAX。
- 选择我的系统»设备和接口»设备。 2.
- 3. 使用下列方法之一开始自校准:
 - 在 MAX 配置树中选择 PXIe-4310, 然后单击位于 MAX 工具栏上的**自校准**按
 - 右键单击 MAX 配置树中的设备名称,从下拉菜单中选择**自校准**。

注 您还可以通过 NI-DAOmx 以编程方式对设备进行自校准,详细信息见 NI-DAOmx 帮助或 LabVIEW 帮助中的设备校准。

运行测试面板

- 1. 在 MAX 中,展开**设备和接口**,选择模块所在的机箱。
- 2. 右键单击设备,选择测试面板。

3. 单击**开始**测试设备功能,或帮助查看使用说明。

如需解决错误,请参考 NI-DAOmx 帮助,或访问 ni.com/support。

进行 NI-DAQmx 测量

NI-DAQmx 通道和任务

关于通道和任务的更多信息,见NI-DAOmx帮助。

使用 DAQ 助手,在 MAX 或应用程序中配置虚拟通道和任务。

在 MAX 中使用 DAQ 助手配置任务

按照下列步骤,在MAX中使用DAQ助手创建任务:

- 1. 在 MAX 中右键单击**数据邻居**,选择**新建**,打开 DAQ 助手。
- 2. 选择 **NI-DAQmx 任务**并单击**下一步**。
- 3. 选择**采集信号**。
- 4. 选择测量类型,如模拟输入-电压。
- 5. 选择要使用的物理通道并单击下一步。
- 6. 命名任务,单击**完成**。
- 7. 配置各个通道。分配至任务的各个物理通道将获得一个虚拟通道名称。如需修改输入范围或其他设置,选择通道。单击**详细信息**,可查看物理通道的相关信息。然后配置任务的定时和触发。单击**运行**。

在应用程序中使用 PXIe-4310 模块

关于 NI 软件版本兼容性的信息,请参考 NI-DAQmx 自述文件。自述文件位于开始》所 有程序 »National Instruments»NI-DAQmx»NI-DAQmx 文档。

如需了解应用软件中使用数据采集的信息,可参考表 2 中所列教程。

表 2. DAQ 助手教程位置

应用程序	教程位置
LabVIEW	访问 ni.com 并搜索 Taking an NI-DAQmx Measurement in LabVIEW。
LabWindows/CVI	选择 Help»Contents,然后选择 Using LabWindows/CVI»Data Acquisition»Taking an NI-DAQmx Measurement in LabWindows/CVI。
Measurement Studio	选择 NI Measurement Studio Help»Getting Started with the Measurement Studio Class Libraries»Measurement Studio Walkthroughs»Walkthrough: Creating a Measurement Studio NI-DAQmx Application。
NI SignalExpress*	选择 Help»Taking an NI-DAQmx Measurement in SignalExpress。
* > H G' 1E H	6. 田工教根冯马应用的,其工和黑的目用工具,进权 工协。任专和应

NI SignalExpress 是一种用于数据记录应用的、基于配置的易用工具,选择开始》所有程序 »National Instruments»NI SignalExpress,可找到该工具。

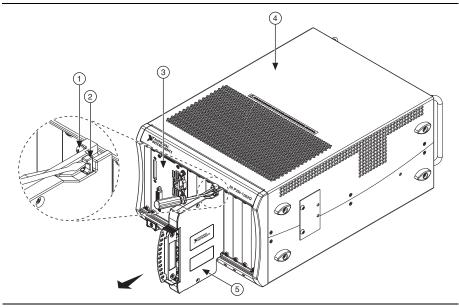
编程范例

NI-DAOmx 中包含范例,可帮助用户在开发应用程序时快速上手。在应用程序软件 中, LabVIEW 和 CVI 范例位于**帮助 » 查找范例**。基于文本的代码位于**所有程序** »National Instruments»NI-DAOmx»NI-DAOmx Examples。对于范例代码,用户可 讲行修改, 然后保存至应用程序, 或将范例添加至现有或新建的应用程序中。

如需其他范例,请访问 ni.com/info 并输入信息代码 dagmxexp。

移除接线盒

如需移除接线盒,请参考图 6 完成下列步骤:


注 移除接线盒时,机箱可处于上电或关闭状态。

- 1. 确保连接到接线盒的设备和电路已断电目没有危险。
- 2. 松开位于接线盒顶部的接线盒安装螺丝。

3. 要移除接线盒:

- a. 使用平头螺丝刀提起锁扣释放装置以释放锁扣。
- b. 提起锁扣释放装置时,抓住接线盒并将其从模块中拉出。

图 6. 从模块移除接线盒

- 1 固定螺丝
- 2 锁扣释放

- 3 PXI Express 控制器
- 4 PXI Express 机箱
- 5 接线盒

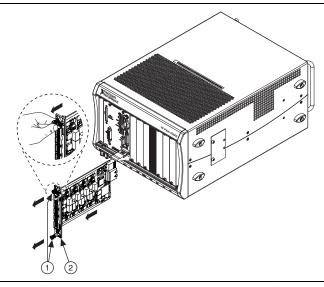
4. 将接线盒存储在防静电包装内。

移除模块

注意 请勿在上电时移除模块。这样做会损坏模块。

如需移除模块,请参考图 7 完成下列步骤:

注 如要保持 PXI Express 系统的强制风冷,见 Maintain Forced-Air Cooling Note to Users。


- 1. 移除模块前,请确保机箱已关闭。
- 2. 松动模块顶部和底部的紧固螺丝。

注意 请勿通过拉拔前面板移除模块。这样做可能导致模块组件接触到相邻的模块,从而损坏模块。

- 3. 卸下紧固螺丝,松开模块,慢慢沿滑槽滑动模块。
- 4. 在空插槽中安装填充板。
- 5. 将模块存储在防静电包装内。

图 7. 移除 PXIe-4310 模块

1 紧固螺丝 (用于移除模块。)

2 前面板 (不可用于移除模块。)

创建仿真设备

如要在无设备的情况下运行范例,请使用 NI-DAQmx 仿真设备。在 MAX 中创建仿真 设备:

- 1. 启动 MAX。
- 2. 右键单击**设备和接口》新建**。
- 3. 从对话框中选择**仿真 NI-DAQmx 设备或模块化仪器**并单击**完成**。
- 4. 在窗口顶部的文本框中输入 4310。
- 5. 从设备列表中选择一个设备。
- 6. 单击确定。

创建完模拟 PXIe 模块后,就可以仿真接线盒。要在 MAX 中创建仿真 TB-4310 (10V)/TB-4310 (600V) 接线盒,请完成以下步骤:

- 1. 右键单击仿真 PXIe 模块并选择"配置"。
- 2. 在"附件"选项卡上的"连接器 0"下,选择仿真所需的接线盒,然后单击确定。

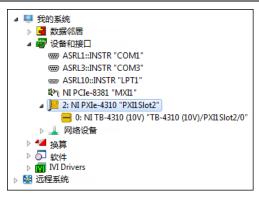


图 9. TB-4310 (600V)

更多信息

安装 NI-DAQmx 后,可通过开始 » 所有程序 »National

Instruments»NI-DAOmx»NI-DAOmx 文档查看 NI-DAOmx 的相关文档。也可登录 ni.com/gettingstarted 获取其他资源。

如需访问在线设备文档,可在 MAX 中右键单击模块并选择**帮助 » 在线设备文档**。浏览 器将打开 ni.com/manuals,显示搜索的相关文档。无网络时,用户可在 NI-DAOmx 光盘中找到支持模块的文档。

疑难解答

- 访问 ni.com/kb。
- 如 NI 硬件产品需返厂维修或校准,请访问 ni.com/info 并输入信息代码 rdsenn, 查看进行商品返修授权 (RMA) 的信息。

产品规范

除非另外声明, 否则所有规范均适用于 TB-4310 (10V) 和 TB-4310 (600V)。

注 PXIe-4310 模块的产品规范见 NI PXIe-4310 产品规范文档。

除非另外声明,否则全部性能产品规范为常规产品规范。在工作温度全量程内,上述产 品规范有效。

校准

电气

模拟输入范围

TB-4310 (10V)..... $\pm 10 \text{ V}, \pm 5 \text{ V}, \pm 2 \text{ V}, \pm 1 \text{ V}$ TB-4310 (600V)......±600 V, ±300 V, ±120 V, ±60 V

输入阻抗 (设备开启)

AI-至 AI COM......>1 GΩ, 与 75 pF 电容并联 AI+ 至 AI COM......>1 GΩ, 与 75 pF 电容并联 TB-4310 (600V)

AI+ 至 AI-2 MΩ

典型精度 (TB-4310 600V)

INL 误差...... 量程的 51 ppm

额定	量程	残余増益	_,, , , , , , , , , , , , , , , , , , ,	偏移温度		
正向量程	负向量程	误差 (读数的 ppm)	残余偏移 (量程的 ppm)	系数 (量程的 ppm/°C)	随机噪声 σ (mV _{rms})	全量程典 型精度 (mV)
600	-600	335	16	9	10.3	298
300	-300	336	21	9	5.5	149
120	-120	339	42	10	2.9	61
60	-60	345	75	13	2.3	33

稳定性

增益漂移......15 ppm/°C 参考温度系数 5 ppm/°C 衰减器自加热 26 uV/V, 每伏特超过 ±120 V

AI 典型精度公式

精度= 读数× (增益误差) + 量程× (偏移误差) + 自加热+ 噪声不确定度 增益误差= 残余增益误差+增益温度系数×(上次内部校准至今的温度变化值)+参考 温度系数× (上次外部校准至今的温度变

偏移误差= 残余增益误差+ 偏移温度系数× (上次内部校准至今的温度变化值) + INL 误差

自加热 = 如果读数 >120 V, 自加热× (读数 - 120 V), 否则为 0。

典型精度范例

全量程精度根据下列假设计算:

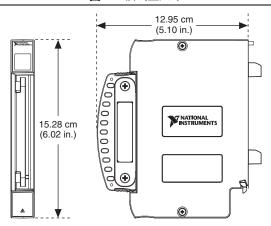
- 上次外部校准至今的温度变化值=10°C
- 上次内部校准至今的温度变化值=1°C
- *采样数量* = 10000
- *包含因子*=3σ

例如, 600 V 量程时的全量程精度计算如下:

增益误差=335 ppm + 15 ppm × 1 °C + 5 ppm × 10 °C = 400 ppm

偏移误差= 16 ppm + 9 ppm × 1 °C + 51 ppm = 76 ppm

自加热 = $26 \mu V/V \times (600 V - 120 V) = 12.48 mV$


噪声不确定度=
$$\frac{10.3 \text{ mV} \times 3}{\sqrt{10000}}$$
 = 309 μV

典型精度= $600 \, \mathrm{V} \times (\dot{q} \, \dot{a} \, \dot{c} \, \dot{z}) + 600 \, \mathrm{V} \times (\dot{q} \, \dot{a} \, \dot{c} \, \dot{z}) + \dot{p} \, \dot{m} \, \dot{m} + \dot{q} \, \dot{p} \, \dot{m} \, \dot{c} \, \dot{p} = 0$ 298 mV

物理特性

螺栓端子线规......2.08 mm² (14 AWG),最大值

图 10. 接线盒尺寸

重量

TB-4310 (10V)......618 g (21.8 oz) TB-4310 (600V).....595g (21.0 oz)

注意 请使用非金属性软刷清洁硬件设备。返修前请确保设备完全干燥且未 受污染。

环境

最高海拔......2,000 m (800 mbar), 环境温度 25 °C 仅限室内使用

运行环境

环境温度范围......0°C~55°C (依据 IEC 60068-2-1 和 IEC 60068-2-2 标 准进行测试。满足 MIL-PRF-28800F Class 3 低温限制和 MIL-PRF-28800F Class 2 高温 限制。)

相对湿度范围......10%~90%, 无凝结 (依据 IEC 60068-2-56 进行测试。)

存储环境

环境温度范围 -40 °C ~ 71 °C

(依据 IEC 60068-2-1 和 IEC 60068-2-2 标 准进行测试。满足 MIL-PRF-28800F Class 3

限制。)

(依据 IEC 60068-2-56 进行测试。)

冲击和振动

(依据 IEC 60068-2-27 标准进行测试。满足

MIL-PRF-28800F Class 2 限制。)

随机振动

设备工作 5 Hz ~ 500 Hz, 0.3 g_{rms}

设备未工作......5 Hz ~ 500 Hz, 2.4 g_{rms}

(依据 IEC 60068-2-64 标准进行测试。

设备未工作时超出 MIL-PRF-28800F.

Class 3 标准。)

安全电压

最大输入电压

仅可连接规定范围之内的电压。

TB-4310 (10V)

AI+ 至 AI-.....±11 V

AI-至 COM ±11 V

TB-4310 (600V)

AI+ 至 AI-......600 VDC/V_{pk}, Measurement Category O;

300 V_{rms}, Measurement Category II

AI-至 COM ±11 V

隔离电压

通道间 ¹	600 VDC/V _{pk} , Measurement Category O;
	$300 \mathrm{V_{rms}}$, Measurement Category II
额定瞬态过压	2,500 V _{pk}
通道对地	600 VDC/ $V_{\rm pk}$, Measurement Category O; 300 $V_{\rm rms}$, Measurement Category II
额定瞬态过压	2,500 V_{nk}

注意 在 Measurement Categories III 和 IV 中,请勿使用 TB-4310 (10V)/TB-4310 (600V) 连接信号或进行测量。

注意 采用本文档中未提及的其他方式操作设备可能影响 TB-4310 (10V)/TB-4310 (600V) 提供的保护。

安全标准

产品设计符合以下测量、控制和实验室用途的电气设备安全标准:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

注 关于 UL 和其他安全认证信息,请查看产品标签或*在线产品认证*章节。

电磁兼容性

产品设计符合以下测量、控制和实验室用途电气设备的 EMC 标准:

- EN 613261 (IEC 613261): Class A 放射标准;基本抗扰度
- EN 55011 (CISPR 11): Group 1, Class A 放射标准
- EN 55022 (CISPR 22): Class A 放射标准
- EN 55024 (CISPR 24): 抗扰度标准
- AS/NZS CISPR 11: Group 1, Class A 放射标准
- AS/NZS CISPR 22: Class A 放射标准
- FCC 47 CFR Part 15B: Class A 放射标准
- ICES-001: Class A 放射标准

¹ Measurement Category CAT I 和 CAT O 等同。这些测量不用于测量类别为 CAT II、III、IV 的 MAINS 建筑物配 电系统直接连接的电路。 MAINS 是对设备供电的电源系统,可能对人体造成伤害。 Measurement Category 0 用于测量受特殊保护的二级电路的电压。这类电压测量包括:信号电平、特种设备、设备的特定低能量部件、 低电压源供能的电路、电子设备。

Measurement Category II 适用于在与配电系统直接相连的电路上进行的测量。该类别表示当地配电标准 (例 如,标准壁装插座电源:在美国为 120 V,在欧洲为 240 V)。

注 在美国 (依据 FCC 47 CFR), Class A 设备适用于商业、轻工业和重工 业环境。在欧洲、加拿大、澳大利亚和新西兰 (依据 CISPR 11), Class A 设备仅适用干重工业环境。

注 Group 1 设备 (依据 CISPR 11) 是指不会出于处理材料或检查 / 分析目 的, 而有意释放射频能量的工业、科学或医疗设备。

注 关于该产品的 EMC 评估标准,请参考*在线产品认证*。

CE 规范 **〔€**

产品已达到现行欧盟产品规范的下列基本要求:

- 2014/35/EU: 低电压规范 (安全性)
- 2014/30/EU; 电磁兼容性规范 (EMC)

在线产品认证

关于合规信息, 见产品的合规声明 (DoC)。如需获取产品认证及合规声明 (DoC),请访 问 ni.com/ certification,通过模块编号或产品线搜索,并在 Certification (认 证) 栏中杳看相应链接。

环境保护

NI 始终致力于设计和制造有利于环境保护的产品。 NI 认为减少产品中的有害物质不仅 有益于环境,也有益于客户。

关于环境保护的详细信息,请访问 ni.com/environment, 查看 Minimize Our Environmental Impact 页面。该页包含 NI 遵守的环境准则和规范,以及本文档未涉及 的其他环境信息。

电气电子设备废弃物 (WEEE)

欧盟用户 所有超过生命周期的产品都*必须*送到 WEEE 回收中心。关于 WEEE 回收中心、NI WEEE 行动及遵循电子废弃物 WEEE 2002/96/EC 指令 的详细信息, 见 ni.com/environment/weee。

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (e) (40) (RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/ environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

全球支持和服务

NI 网站提供全面的技术支持资源。请访问 ni.com/support 获取疑难解答、应用程序 开发自助资源,以及来自 NI 应用工程师的电话或电子邮件帮助。

请访问 $\min.com/services$ 获取 NI 工厂安装服务、维修、保修期延长和其他服务的信息。

请访问 ni.com/register 注册 NI 产品。注册产品将便于您获得技术支持,并确保您收到 NI 的重要更新。

合规声明 (DoC) 表示产品符合欧盟理事会的相关规范。该系统可确保电子产品的电磁兼容性 (EMC) 和安全性。请访问 ni.com/certification 获取产品的合规声明。如产品支持校准服务,可访问 ni.com/calibration 获取校准证书。

NI 总部地址: 11500 North Mopac Expressway, Austin, Texas, 78759-3504。NI 在全球许多国家设有分支机构。美国国内用户如需获得电话支持,请登录 ni.com/support 创建服务请求,或致电 1 866 ASK MYNI (275 6964)。美国之外的用户如需获得电话技术支持,请访问 ni.com/niglobal 查找全球办事处最新的联系方式、技术支持电话、电子邮件地址及当前活动。

称均为其各自公司的商标或商业名称。 件,或 ni.com/patents上的 Nation (EULA) 和第三方法律声明。请登录: 制政策,以及如何获知有关的 HTS 编证,并对其错误不承担任何责任。美!	com/trademarks, 查看 NI Trademarks and Logo Guidelines。此处提及的其他产品和公司名 关于 NI 产品和技术的专利权,请查看软件中的 帮助》专利信息 、光盘中的 patents.txt 文 nal Instruments Patent Notice。产品安装结束后,可在自述文件中查看最终用户许可协议 ni.com/legal/export-compliance 的 Export Compliance Information 查阅 NI 全球出口管 码。ECCN 和其他进出口信息。NI 对于本文件所含信息的准确性不作任何明示或默示的保 国政府用户,本手册中包含的数据系使用私人经费开发的,且本手册所包含的数据受到联邦采 到补充规定 252.227-7014 和 252.227-7015 中规定适用的有限权利和受限数据权益条款的约束。
© 2017 National Instruments. 版权所	有
377029B-0118	2017年4月