PXIe-5163 Specifications

Contents

DVI0-5163 S	nacifications				 -
1 VIG-2102 2	pecifications	 	 	 . .	 _

PXIe-5163 Specifications

PXIe-5163 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- **Measured** specifications describe the measured performance of a representative model.

Specifications are *Nominal* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- All vertical ranges, bandwidths, and bandwidth-limiting filters
- Sample rate set to 1 GS/s
- Onboard sample clock locked to onboard reference clock
- 15-minute warm-up time at ambient temperature

Warranted specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature range of 0 °C to 50 °C
- Calibration cycle maintained
- Chassis configured:¹
 - PXI Express chassis fan speed set to HIGH
 - Foam fan filters removed if present
 - Empty slots contain PXI chassis slot blockers and filler panels
- External calibration performed at 23 °C ± 3 °C
- Within ±5 °C of temperature at last self-calibration as reported by onboard temperature sensor

Typical specifications are valid under the following conditions unless otherwise noted.

• Ambient temperature range of 0 °C to 50 °C

1. For more information about cooling, refer to the *Maintain Forced-Air Cooling Note to Users* available at <u>ni.com/manuals</u>.

PXIe-5163 Front Panel

Figure 1. PXIe-5163 Front Panel

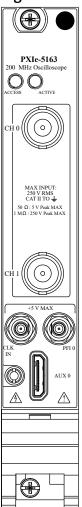


Table 1. Connectors

Signal	Connector Type	Description
CH 0 and CH 1	BNC female	Analog input connection; digitizes data and triggers acquisitions.
CLK IN	SMB	Imports an external reference clock or sample clock to the oscilloscope.
PFI 0	SMB	PFI line for digital trigger input/output, probe compensation.
AUX 0	MHDMR	Reference clock input, reference clock output, bidirectional digital PFI, and 3.3 V power output.

PXIe-5163 Pinout

Use the pinout to connect to terminals on the PXIe-5163.

Figure 2. PXIe-5163 AUX 0 Connector Pinout

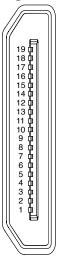


Table 2. AUX 0 Connector Pin Assignments

Pin	Signal	Signal Description
1	GND	Ground reference for signals
2	CLK IN	Used to import an external Reference Clock or Sample Clock
3	GND	Ground reference for signals
4	GND	Ground reference for signals
5	CLK OUT	Used to export the Reference Clock
6	GND	Ground reference for signals
7	GND	Ground reference for signals
8	AUX 0/PFI 0	Bidirectional PFI line
9	AUX 0/PFI 1	Bidirectional PFI line
10	GND	Ground reference for signals
11	AUX 0/PFI 2	Bidirectional PFI line
12	AUX 0/PFI 3	Bidirectional PFI line
13	GND	Ground reference for signals
14	AUX 0/PFI 4	Bidirectional PFI line

Pin	Signal	Signal Description
15	AUX 0/PFI 5	Bidirectional PFI line
16	AUX 0/PFI 6	Bidirectional PFI line
17	AUX 0/PFI 7	Bidirectional PFI line
18	+3.3 V	+3.3 V power (200 mA maximum)
19	GND	Ground reference for signals

PXIe-5163 SCB-19 Pinout

You can use the SCB-19 connector block to connect digital signals to the AUX 0 connector on the PXIe-5163 front panel. Refer to the following figure and table for information about the SCB-19 signals when connected to the AUX 0 front panel connector.

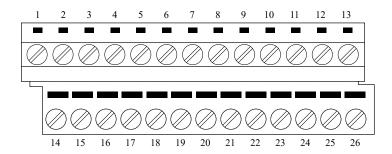


Table 3. SCB-19 Signal Descriptions

Pin	Signal	Signal Description
1	PFI 0	Bidirectional PFI line
2	PFI 1	Bidirectional PFI line
3	PFI 2	Bidirectional PFI line
4	PFI 3	Bidirectional PFI line
5	NC	No connection
6	CLK IN	Used to import an external reference clock or sample clock
7	NC	No connection

Pin	Signal	Signal Description
8	CLK OUT	Used to export the reference clock
9	PFI 4	Bidirectional PFI line
10	PFI 5	Bidirectional PFI line
11	PFI 6	Bidirectional PFI line
12	PFI 7	Bidirectional PFI line
13	+3.3 V	+3.3 V power (200 mA maximum)
14 to 26	GND	Ground reference for signals

PXIe-5163 AUX 0 Breakout Cable to 6 BNCs Pinout

You can use the AUX 0 Breakout Cable to 6 BNCs to connect digital signals to the AUX 0 connector on the PXIe-5163 front panel. Refer to the following figure and table for information about the AUX 0 Breakout Cable to 6 BNCs signals when connected to the AUX 0 front panel connector.

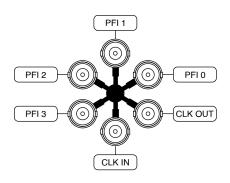


Table 4. AUX 0 Breakout Cable to 6 BNCs Signal Descriptions

Signal	Connector Type	Description
CLK IN	BNC female	Used to import an external reference clock
CLK OUT		Used to export the reference clock
PFI 0		Bidirectional PFI line
PFI 1		Bidirectional PFI line

Signal	Connector Type	Description
PFI 2		Bidirectional PFI line
PFI 3		Bidirectional PFI line

Vertical

Analog Input

Number of channels	Two (simultaneously sampled)
Input type	Referenced single-ended
Connectors	BNC, ground referenced

Impedance and Coupling

Input impedance	50 Ω ±1.25%, typical 1 M Ω ±0.5%, typical
Input capacitance (1 MΩ)	20.2 pF ±2.5 pF, typical
Input coupling	AC DC

Figure 1. 50 Ω Voltage Standing Wave Ratio (VSWR)

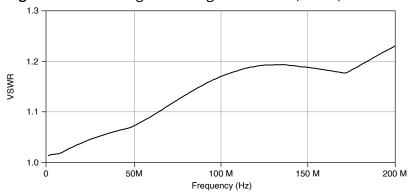
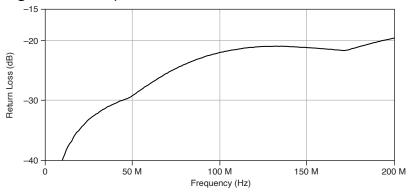
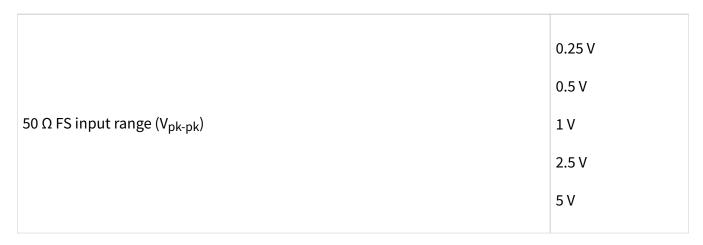




Figure 1. 50 Ω Input Return Loss

Voltage Levels

Table 5. 1 M Ω FS Input Range and Vertical Offset Range

Input Range (V _{pk-pk})	Vertical Offset Range ² (V)
0.25 V	±5
0.5 V	±5

2. For input ranges between 2.5 V_{pk-pk} and 100 V_{pk-pk} , two offset ranges are possible. The driver software automatically picks the offset range that provides the highest resolution and accuracy.

Input Range (V _{pk-pk})	Vertical Offset Range (V)
1 V	±5
2.5 V	±10 or ±248.75
5 V	±10 or ±247.5
10 V	±10 or ±245
25 V	±50 or ±237.5
50 V	±50 or ±225
100 V	±50 or ±200

Maximum input overload	
50 Ω	Peaks ≤5 V
1 MΩ ^{3 [3]}	250 V RMS

Notice Signals exceeding the maximum input overload may cause damage to the device.

Accuracy

Resol	ution 14 bits		
DC ac	accuracy ^{4[4], 5}		
50 Ω	$\pm[(0.5\% \times \textbf{Reading}) + (0.2\% \text{ of FS})], \text{ warranted}$		
1 ΜΩ	$ \frac{\pm[(0.65\% \times \textit{Reading} - \textit{Vertical Offset}) + (0.4\% \times \textit{Vertical Offset}) + (0.2\% \text{ of FS}) + \\ 0.15 \text{ mV}], \text{ warranted} $		

3. Derate above 500 kHz at 20 dB/dec until 5 MHz, then derate at 10 dB/dec.

DC drift ⁶	±0.0013 dB per °C at 50 kHz
AC amplitude accuracy ^[4]	±0.225 dB at 50 kHz, warranted

Crosstalk Crosstalk is measured on one channel with a test signal applied to the other channel and the same range setting on both channels.

Table 6. 50 Ω Crosstalk

Frequency	Level
1 MHz	-100 dB
10 MHz	-100 dB
100 MHz	-85 dB
200 MHz	-75 dB

Table 7. 1 M Ω Crosstalk

Frequency	Level		
	0.25 V to 10 V (V _{pk-pk})	25 V to 100 V (V _{pk-pk})	
1 MHz	-85 dB	-70 dB	
10 MHz	-85 dB	-70 dB	
100 MHz	-75 dB	-55 dB	
200 MHz	-70 dB	-50 dB	

- 4. Within ±5 °C of self-calibration temperature.
- 5. Applies after averaging data for 8.5 ms.
- 6. Used to calculate errors when onboard temperature changes more than ± 3 °C from the self-calibration temperature.

Bandwidth and Transient Response

Bandwidth (-3 dB) ^{7[7],8[8]}		200 MHz, warranted	
Bandwidth-limiting filt	ers ^{[7],[8]}		
Lowpass filters			20 MHz 30 MHz 150 MHz
Highpass filters			90 Hz 450 Hz
Passband amplitude fla	atness (at <150 MHz) ^{[7],[8]}		
50 Ω	±0.5 dB, warranted		
1 MΩ ± 0.7 dB, typical			
AC-coupling cutoff (-3 dB)			
50 Ω ⁹		40 kHz	
1 MΩ ^[8]		7.5 Hz	
Rise/fall time ¹⁰		2 ns	

- 7. Normalized to 50 kHz.
- 8. For 1 M Ω mode, verified using a 50 Ω source and 50 Ω feed-through terminator.
- 9. Verified using a 50 Ω source.
- 10.50% FS input pulse.

Figure 1. 50 Ω Full Bandwidth Frequency Response, 1 V_{pk-pk} , Measured

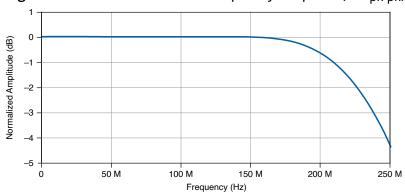


Figure 1. 50 Ω Full Bandwidth Frequency Response Zoomed, 1 V_{pk-pk} , Measured

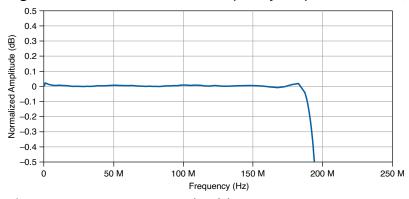
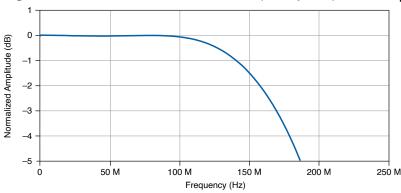
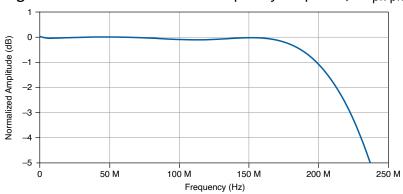
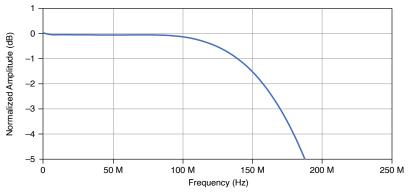


Figure 1. 50 Ω 150 MHz Bandwidth Frequency Response, 1 V_{pk-pk} , Measured


Figure 1. 1 M Ω Full Bandwidth Frequency Response, 1 V_{pk-pk} , Measured

0.4 -Normalized Amplitude (dB) 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 -50 M 100 M 200 M 150 M 250 M

Figure 1. 1 $M\Omega$ Full Bandwidth Frequency Response Zoomed, 1 V_{pk-pk} , Measured

Figure 1. 1 M Ω 150 MHz Bandwidth Frequency Response, 1 V_{pk-pk}, Measured

Spectral Characteristics

$50\,\Omega$ Spectral Characteristics Excludes ADC interleaving spurs. 1

Table 8. Spurious-Free Dynamic Range $(SFDR)^{11[11]}$

Input Range (V _{pk-pk})	<100 MHz, Full Bandwidth (dBc)
0.25 V	-70
0.5 V	-73
1 V	-73
2.5 V	-73
5 V	-70

11. -1 dBFS input signal corrected to FS. 1 kHz resolution bandwidth.

Table 9. Total Harmonic Distortion $(THD)^{12[\underline{12}]}$

Input Range (V _{pk-pk})	<50 MHz, Full Bandwidth (dBc)	≥50 MHz to ≤100 MHz, Full Bandwidth (dBc)
0.25 V	-73	-69
0.5 V	-73	-72
1 V	-72	-70
2.5 V	-72	-68
5 V	-72	-69

Table 10. Effective Number of Bits $(ENOB)^{[11]}$

Input Range (V _{pk-pk})	<100 MHz, Full Bandwidth	<100 MHz, 150 MHz Filter
0.25 V	10.5	10.7
0.5 V	10.7	10.9
1 V	10.7	11.0
2.5 V	10.9	11.1
5 V	10.8	11.0

Figure 1. 50 Ω Single-Tone Spectrum, 1 V_{pk-pk}Input Range, 150 MHz Filter, 9.9 MHz Input Tone at -1 dBFS, Measured

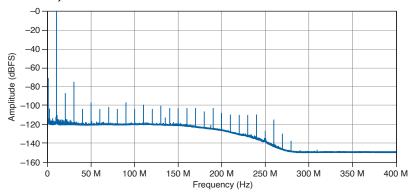


Figure 1. 50 Ω Single-Tone Spectrum, 1 V_{pk-pk}Input Range, Full Bandwidth, 9.9 MHz Input Tone at

12. 1 dBFS input signal corrected to FS. Includes the second through the fifth harmonics.

-1 dBFS, Measured

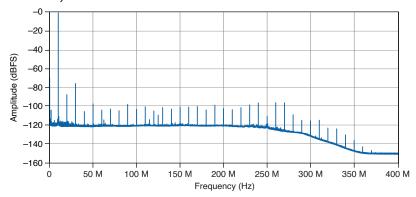
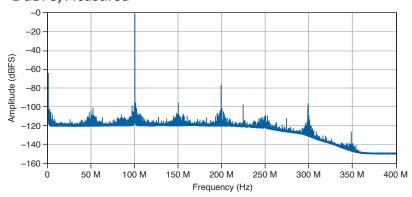



Figure 1. 50 Ω Single-Tone Spectrum, 1 V_{pk-pk}Input Range, Full Bandwidth, 99.9 MHz Input Tone at -1 dBFS, Measured

1 M Ω Spectral Characteristics 1 , Verified using a 50 Ω source and 50 Ω feed-through terminator.

Figure 1. 1 M Ω Single-Tone Spectrum, 1 V_{pk-pk}Input Range, 150 MHz Filter, 9.9 MHz Input Tone at -1 dBFS, Measured

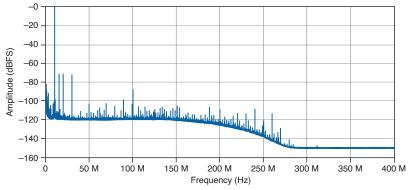
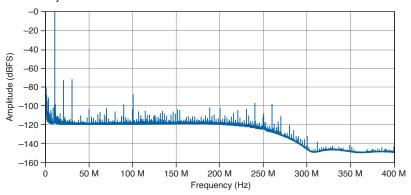
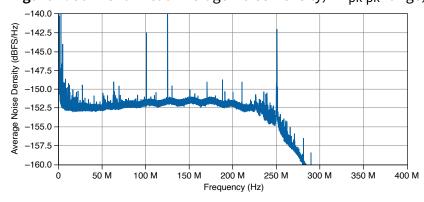



Figure 1. 1 M Ω Single-Tone Spectrum, 1 V_{pk-pk}Input Range, Full Bandwidth, 9.9 MHz Input Tone at

-1 dBFS, Measured



Noise¹³

50Ω RMS Noise

	RMS Noise (% of FS)	
Input Range (V _{pk-pk})	Full Bandwidth, Warranted	150 MHz Filter, Typical
0.25 V	0.045	0.018
0.5 V	0.040	0.018
1 V	0.035	0.017
2.5 V	0.030	0.017
5 V	0.030	0.014

Figure 1. 50 Ω Channel 0 Average Noise Density, 1 V_{pk-pk} Range, Measured

13. Verified with 50 Ω terminator connected directly to BNC input.

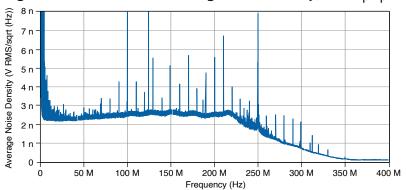


Figure 1. 50 Ω Channel 0 Average Noise Density, 0.25 V_{pk-pk} Range, Measured

$1\,\text{M}\Omega$ RMS Noise

	RMS Noise (% of FS)	
Input Range (V _{pk-pk})	Full Bandwidth, Warranted	150 MHz Filter, Typical
0.25 V	0.110	0.070
0.5 V	0.060	0.050
1 V	0.050	0.030
2.5 V	0.100	0.055
5 V	0.060	0.045
10 V	0.050	0.030
25 V	0.080	0.050
50 V	0.060	0.040
100 V	0.050	0.030

Horizontal

Sample Clock

Sources	
Internal	Onboard clock (internal VCTCXO)

External	CLK IN (front panel SMB connector) PXIe-DSTAR_A (backplane connector)		
Sample rate range, real-time ¹⁴		15.259 kS/s to 1 GS/s	
Timebase frequency		1.0 GHz	
Timebase accuracy			
Phase-locked to onboard clock		±5 ppm, warranted	
Phase-locked to external clock		Equal to the external clock accuracy	
Sample clock jitter ¹⁵			500 fs RMS

Phase-Locked Loop (PLL) Reference Clock

Sources	
Internal	Onboard clock (internal VCTCXO) PXI_CLK10 (backplane connector)
External (10 MHz)	CLK IN (front panel SMB connector) AUX 0 CLK IN (front panel MHDMR connector)

- 14. Divide by n decimation from 1.0 GS/s used for all rates less than 1.0 GS/s. For more information about the sample clock and decimation, refer to the *NI High-Speed Digitizers Help*.
- 15. Integrated from 100 Hz to 10 MHz. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter. Excludes trigger jitter.

Outy cycle tolerance

External Sample Clock

Source	CLK IN (front panel SMB connector)
Impedance	50 Ω
Coupling	AC
Frequency	1.0 GHz
Input voltage range, when configured as a sample clock	632 mV _{pk-pk} to 5 V _{pk-pk} (0 dBm to 18 dBm), typical
Maximum input overload, when configured as a sample clock	6 V _{pk-pk}
Duty cycle tolerance	45% to 55%, typical

External Reference Clock In

CLK IN (front panel SMB connector)
AUX 0 CLK IN (front panel MHDMR connector)

Impedance	50 Ω
Coupling	AC
Frequency ¹⁶	10 MHz
Input voltage range, when configured as a reference clock	623 mV _{pk-pk} to 5 V _{pk-pk} (0 dBm to 18 dBm), typical
Maximum input overload, when configured as a reference clock	6 V _{pk-pk}

Reference Clock Out

Source	PXI_CLK10 (backplane connector)
Destination	AUX 0 CLK OUT (front panel MHDMR connector)
Output impedance	50 Ω
Logic type	3.3 V CMOS
Maximum current drive	±12 mA

16. The PLL reference clock must be accurate to ± 25 ppm.

Trigger

Supported triggers	Reference (stop) trigger Reference (arm) trigger Start trigger Advance trigger
Trigger types	Edge Window Hysteresis Digital Immediate Software
Trigger sources	CH 0 CH 1 SMB PFI 0 AUX 0 PFI < 07> PXI_Trig < 06> Software
Trigger delay	from 0 ns to 2.25×10^{15} ns $((2^{51} - 1) \times $ Sample Clock Period ns)
Dead time	496 ns

Hold off	From dead time to 1.84×10^{19} ns ((2^{64} - 1) × Sample Clock Period ns)	
----------	--	--

For more information about triggers, refer to *Triggering* in *NI-SCOPE*.

Related information:

• <u>Triggering</u>

Analog Trigger

Sources		CH 0 CH 1	
Time resolution			
Interpolator enabled Sample Clock Period		1 / 1024 = 0.977 ps	
Interpolator disabled Sample clock period (1 r		าร)	
Trigger filters	'		
Low Frequency (LF) Reject			100 kHz
High Frequency (HF) Reject			100 kHz
Trigger accuracy ^{17[17]}		0.5% of FS	
Trigger jitter ^[17]		15 ps RMS	

17. Analog triggers. For input frequencies less than 150 MHz.

Minimum threshold duration ¹⁸	Sample clock period
--	---------------------

Digital Trigger

Sources	PFI 0 (front panel SMB connector) AUX 0 PFI < 07> (front panel MHDMR connector) PXI_Trig < 06> (backplane connector)
Time resolution	8 ns
Approximate trigger delay difference between analog edge trigger and digital trigger source ¹⁹	1275 ns, nominal

Related information:

• Characterizing Setup to Account for Delay on Digital Trigger

- 18. Data must exceed each corresponding trigger threshold for at least the minimum duration to ensure analog triggering.
- 19. This value is approximate because changes to the digital trigger routing or the analog signal path affect propagation delay. You can compensate for the delay difference by adjusting the NI-SCOPE trigger delay value. Add an additional 80 ns trigger delay when passing a trigger between PXIe-5163 modules. With the same hardware and software configuration, the trigger delay difference is consistent within the timing resolution across modules of the same model. For more information about the trigger delay difference, refer to Characterizing Setup to Account for Delay on Digital Trigger.

Programmable Function Interface

Connectors	AUX 0 PFI <07> (front panel MHDMR connector) PFI 0 (front panel SMB connector)	
Direction	Bidirectional per channel	
As an input (trigger)		
Destination		Start trigger (acquisition arm) Reference (stop) trigger Arm reference trigger Advance trigger
Input impedance		49.9 kΩ
V _{IH}		2 V, typical
V _{IL}		0.8 V, typical
Recommended input range		3.3 V
Maximum input overload		0 to 3.3 V (5 V tolerant)
Maximum frequency		50 MHz

Minimum pulse width	10 ns
As an output (event)	
Sources	Ready for Start Start trigger (acquisition arm) Ready for Reference Reference (stop) trigger End of Record Ready for Advance Advance trigger Done (end of acquisition) Probe compensation ²⁰
Output impedance	50 Ω
Logic type	3.3 V CMOS
Maximum current drive	12 mA
Maximum frequency	50 MHz
Minimum pulse width	10 ns

^{20. 1} kHz, 50% duty cycle square wave, SMB PFI 0 only.

AUX 0 Connector Specifications

Connector	MHDMR
Voltage output	3.3 V ±10%
Maximum current drive on +3.3 V	200 mA
Output impedance on +3.3 V	<1 Ω

Waveform Specifications

Onboard memory size ²¹	512 MB
Minimum record length	1 sample
Number of pretrigger samples	Zero up to (Record Length - 1)
Number of posttrigger samples	Zero up to Record Length
Maximum number of records in onboard memory ²²	1,398,101 for 512 MB

- 21. Onboard memory is shared among all enabled channels.
- 22. You can exceed these numbers if you fetch records while acquiring data. For more information, refer to the *NI High-Speed Digitizers Help*.

Table 14. Examples of Allocated Onboard Memory Per Record (512 MB Onboard Memory)

Channels	Bytes per Sample	Max Records per Channel	Record Length	Allocated Onboard Memory per Record
1	2	1,398,101	1	384
1	2	223,696	1,000	2,400
1	2	26,379	10,000	20,352
1	2	1	268,435,265	536,870,912
2	2	1,398,101	1	384
2	2	121,574	1,000	4,416
2	2	13,283	10,000	33,216
2	2	1	134,217,633	536,870,912

Memory Sanitization

For information about memory sanitization, refer to the letter of volatility for your device, which is available at ni.com/manuals.

Calibration

External Calibration

External calibration yields the following benefits:

- · Corrects for gain and offset errors of the onboard references used in selfcalibration.
- Adjusts timebase accuracy.
- Compensates the 1 M Ω ranges.
- Corrects the frequency response for all ranges.

All calibration constants are stored in nonvolatile memory.

Self-Calibration

Self-calibration is done on software command. The calibration corrects for the following aspects:

- Gain
- Offset
- Interleaving spurs
- Intermodule synchronization errors

Refer to the **NI High-Speed Digitizers Help** for information about when to self-calibrate the device.

Calibration Specifications

Interval for external calibration	2 years
Warm-up time ²³	15 minutes

Software

Driver Software

Driver support for this device was first available in NI-SCOPE18.7.

NI-SCOPE is an IVI-compliant driver that allows you to configure, control, and calibrate the PXIe-5163. NI-SCOPE provides application programming interfaces for many development environments.

Application Software

NI-SCOPE provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindows[™]/CVI[™]
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)
- 23. Warm-up begins after the chassis and controller or PC is powered and NI-SCOPE is loaded and recognizes the PXIe-5163.

Interactive Soft Front Panel and Configuration

When you install NI-SCOPE on a 64-bit system, you can use InstrumentStudio to monitor, control, and record measurements from the PXIe-5163.

InstrumentStudio is an application that allows you to perform interactive measurements on several different NI device types in a single application.

Interactive control of the PXIe-5163 was first available via InstrumentStudio in NI-SCOPE18.7. InstrumentStudio is included on the NI-SCOPE media.

NI Measurement & Automation Explorer (MAX) also provides interactive configuration and test tools for the PXIe-5163. MAX is included on the driver media.

Synchronization

Channel-to-channel skew, between the channels of a PXIe-5163	
50 Ω	<100 ps
1 ΜΩ	<150 ps

Note The channels of a PXIe-5163 are automatically synchronized when they are in the same NI-SCOPE session.

Synchronization with the NI-TClk API

NI-TClk is an API that enables system synchronization of supported PXI modules in one or more PXI chassis, which you can use with the PXIe-5163 and NI-SCOPE. NI-TClk installs with NI-SCOPE.

NI-TClk uses a shared Reference Clock and triggers to align the Sample Clocks of PXI modules and synchronize the distribution and reception of triggers. These signals are routed through the PXI chassis backplane without external cable connections between PXI modules in the same chassis.

Module-to-module skew, between PXIe-5163 modules using NI-TClk ²⁴			
NI-TClk synchronization without manual adjustment ²⁵ [25]			
Skew, peak-to-peak ²⁶ 300 ps, typical			
NI-TClk synchronization with manual adjustment [25]			
Skew, average		≤10 ps	
Sample Clock delay/adjustment resolution			3.5 ps

Power Requirements

Current draw		
+3.3 V DC	1.97 A	
+12 V DC	1.63 A	
Power draw		
+3.3 V DC	6.5 W	

- 24. Specifications are valid under the following conditions:
 - All modules installed in the same PXI Express chassis
 - NI-TClk used to align the sample clocks of each module
 - Modules synchronized without using an external sample clock
 - All parameters set to identical values for each module
 - Self-calibration completed
- 25. Manual adjustment is the process of minimizing synchronization jitter and skew by adjusting Trigger Clock (TClk) signals using the instrument driver.
- 26. **Skew** is the misalignment between module timing across slots of a chassis and is caused by clock and analog path delay differences.

+12 V DC	19.5 W
Total	26 W

Physical

Dimensions	3U, one-slot, PXI Express Gen 2 x8 module 21.26 cm × 12.88 cm × 2.0 cm (8.37 in. × 5.07 in. × 0.787 in.)
Weight	460 g (16.2 oz)

Bus Interface

Form factor	PXI Express (x8 Gen 2)
Slot compatibility	PXI Express or hybrid

Environmental Characteristics

Temperature		
Operating	0 °C to 50 °C	
Storage	-40 °C to 71 °C	
Humidity		

Operating	10% to 90%, noncondensing	
Storage	5% to 95%, noncondensing	
Pollution Degree	2	
Maximum altitude	4,600 m (570 mbar) (at 25 °C ambient temperature)	
Shock and Vibration		
Operating vibration		5 Hz to 500 Hz, 0.3 g RMS
Non-operating vibration		5 Hz to 500 Hz, 2.4 g RMS
Operating shock		30 g, half-sine, 11 ms pulse

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/product-certifications, search by model number, and click the appropriate link.